Commit 1109480e authored by Augustin-Zidek's avatar Augustin-Zidek
Browse files

Initial release of AlphaFold.

PiperOrigin-RevId: 384954738
parents
# How to Contribute
We welcome small patches related to bug fixes and documentation, but we do not
plan to make any major changes to this repository.
## Contributor License Agreement
Contributions to this project must be accompanied by a Contributor License
Agreement. You (or your employer) retain the copyright to your contribution,
this simply gives us permission to use and redistribute your contributions as
part of the project. Head over to <https://cla.developers.google.com/> to see
your current agreements on file or to sign a new one.
You generally only need to submit a CLA once, so if you've already submitted one
(even if it was for a different project), you probably don't need to do it
again.
## Code reviews
All submissions, including submissions by project members, require review. We
use GitHub pull requests for this purpose. Consult
[GitHub Help](https://help.github.com/articles/about-pull-requests/) for more
information on using pull requests.
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
![header](imgs/header.jpg)
# AlphaFold
This package provides an implementation of the inference pipeline of AlphaFold
v2.0. This is a completely new model that was entered in CASP14 and published in
Nature. For simplicity, we refer to this model as AlphaFold throughout the rest
of this document.
Any publication that discloses findings arising from using this source code or
the model parameters should [cite](#citing-this-work) the
[AlphaFold paper](https://doi.org/10.1038/s41586-021-03819-2).
![CASP14 predictions](imgs/casp14_predictions.gif)
## First time setup
The following steps are required in order to run AlphaFold:
1. Install [Docker](https://www.docker.com/).
* Install
[NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html)
for GPU support.
* Setup running
[Docker as a non-root user](https://docs.docker.com/engine/install/linux-postinstall/#manage-docker-as-a-non-root-user).
1. Download genetic databases (see below).
1. Download model parameters (see below).
1. Check that AlphaFold will be able to use a GPU by running:
```bash
docker run --rm --gpus all nvidia/cuda:11.0-base nvidia-smi
```
The output of this command should show a list of your GPUs. If it doesn't,
check if you followed all steps correctly when setting up the
[NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html)
or take a look at the following
[NVIDIA Docker issue](https://github.com/NVIDIA/nvidia-docker/issues/1447#issuecomment-801479573).
### Genetic databases
This step requires `rsync` and `aria2c` to be installed on your machine.
AlphaFold needs multiple genetic (sequence) databases to run:
* [UniRef90](https://www.uniprot.org/help/uniref),
* [MGnify](https://www.ebi.ac.uk/metagenomics/),
* [BFD](https://bfd.mmseqs.com/),
* [Uniclust30](https://uniclust.mmseqs.com/),
* [PDB70](http://wwwuser.gwdg.de/~compbiol/data/hhsuite/databases/hhsuite_dbs/),
* [PDB](https://www.rcsb.org/) (structures in the mmCIF format).
We provide a script `scripts/download_all_data.sh` that can be used to download
and set up all of these databases. This should take 8–12 hours.
:ledger: **Note: The total download size is around 428 GB and the total size
when unzipped is 2.2 TB. Please make sure you have a large enough hard drive
space, bandwidth and time to download.**
This script will also download the model parameter files. Once the script has
finished, you should have the following directory structure:
```
$DOWNLOAD_DIR/ # Total: ~ 2.2 TB (download: 428 GB)
bfd/ # ~ 1.8 TB (download: 271.6 GB)
# 6 files.
mgnify/ # ~ 64 GB (download: 32.9 GB)
mgy_clusters.fa
params/ # ~ 3.5 GB (download: 3.5 GB)
# 5 CASP14 models,
# 5 pTM models,
# LICENSE,
# = 11 files.
pdb70/ # ~ 56 GB (download: 19.5 GB)
# 9 files.
pdb_mmcif/ # ~ 206 GB (download: 46 GB)
mmcif_files/
# About 180,000 .cif files.
obsolete.dat
uniclust30/ # ~ 87 GB (download: 24.9 GB)
uniclust30_2018_08/
# 13 files.
uniref90/ # ~ 59 GB (download: 29.7 GB)
uniref90.fasta
```
### Model parameters
While the AlphaFold code is licensed under the Apache 2.0 License, the AlphaFold
parameters are made available for non-commercial use only under the terms of the
CC BY-NC 4.0 license. Please see the [Disclaimer](#license-and-disclaimer) below
for more detail.
The AlphaFold parameters are available from
https://storage.googleapis.com/alphafold/alphafold_params_2021-07-14.tar, and
are downloaded as part of the `scripts/download_all_data.sh` script. This script
will download parameters for:
* 5 models which were used during CASP14, and were extensively validated for
structure prediction quality (see Jumper et al. 2021, Suppl. Methods 1.12
for details).
* 5 pTM models, which were fine-tuned to produce pTM (predicted TM-score) and
predicted aligned error values alongside their structure predictions (see
Jumper et al. 2021, Suppl. Methods 1.9.7 for details).
## Running AlphaFold
**The simplest way to run AlphaFold is using the provided Docker script.** This
was tested on Google Cloud with a machine using the `nvidia-gpu-cloud-image`
with 12 vCPUs, 85 GB of RAM, a 100 GB boot disk, the databases on an additional
3 TB disk, and an A100 GPU.
1. Clone this repository and `cd` into it.
```bash
git clone https://github.com/deepmind/alphafold.git
```
1. Modify `DOWNLOAD_DIR` in `docker/run_docker.py` to be the path to the
directory containing the downloaded databases.
1. Build the Docker image:
```bash
docker build -f docker/Dockerfile -t alphafold .
```
1. Install the `run_docker.py` dependencies. Note: You may optionally wish to
create a
[Python Virtual Environment](https://docs.python.org/3/tutorial/venv.html)
to prevent conflicts with your system's Python environment.
```bash
pip3 install -r docker/requirements.txt
```
1. Run `run_docker.py` pointing to a FASTA file containing the protein sequence
for which you wish to predict the structure. If you are predicting the
structure of a protein that is already in PDB and you wish to avoid using it
as a template, then `max_template_date` must be set to be before the release
date of the structure. For example, for the T1050 CASP14 target:
```bash
python3 docker/run_docker.py --fasta_paths=T1050.fasta --max_template_date=2020-05-14
```
By default, Alphafold will attempt to use all visible GPU devices. To use a
subset, specify a comma-separated list of GPU UUID(s) or index(es) using the
`--gpu_devices` flag. See
[GPU enumeration](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/user-guide.html#gpu-enumeration)
for more details.
1. You can control AlphaFold speed / quality tradeoff by adding either
`--preset=full_dbs` or `--preset=casp14` to the run command. We provide the
following presets:
* **casp14**: This preset uses the same settings as were used in CASP14.
It runs with all genetic databases and with 8 ensemblings.
* **full_dbs**: The model in this preset is 8 times faster than the
`casp14` preset with a very minor quality drop (-0.1 average GDT drop on
CASP14 domains). It runs with all genetic databases and with no
ensembling.
Running the command above with the `casp14` preset would look like this:
```bash
python3 docker/run_docker.py --fasta_paths=T1050.fasta --max_template_date=2020-05-14 --preset=casp14
```
### AlphaFold output
The outputs will be in a subfolder of `output_dir` in `run_docker.py`. They
include the computed MSAs, unrelaxed structures, relaxed structures, ranked
structures, raw model outputs, prediction metadata, and section timings. The
`output_dir` directory will have the following structure:
```
output_dir/
features.pkl
ranked_{0,1,2,3,4}.pdb
ranking_debug.json
relaxed_model_{1,2,3,4,5}.pdb
result_model_{1,2,3,4,5}.pkl
timings.json
unrelaxed_model_{1,2,3,4,5}.pdb
msas/
bfd_uniclust_hits.a3m
mgnify_hits.sto
uniref90_hits.sto
```
The contents of each output file are as follows:
* `features.pkl` – A `pickle` file containing the input feature Numpy arrays
used by the models to produce the structures.
* `unrelaxed_model_*.pdb` – A PDB format text file containing the predicted
structure, exactly as outputted by the model.
* `relaxed_model_*.pdb` – A PDB format text file containing the predicted
structure, after performing an Amber relaxation procedure on the unrelaxed
structure prediction, see Jumper et al. 2021, Suppl. Methods 1.8.6 for
details.
* `ranked_*.pdb` – A PDB format text file containing the relaxed predicted
structures, after reordering by model confidence. Here `ranked_0.pdb` should
contain the prediction with the highest confidence, and `ranked_4.pdb` the
prediction with the lowest confidence. To rank model confidence, we use
predicted LDDT (pLDDT), see Jumper et al. 2021, Suppl. Methods 1.9.6 for
details.
* `ranking_debug.json` – A JSON format text file containing the pLDDT values
used to perform the model ranking, and a mapping back to the original model
names.
* `timings.json` – A JSON format text file containing the times taken to run
each section of the AlphaFold pipeline.
* `msas/` - A directory containing the files describing the various genetic
tool hits that were used to construct the input MSA.
* `result_model_*.pkl` – A `pickle` file containing a nested dictionary of the
various Numpy arrays directly produced by the model. In addition to the
output of the structure module, this includes auxiliary outputs such as
distograms and pLDDT scores. If using the pTM models then the pTM logits
will also be contained in this file.
This code has been tested to match mean top-1 accuracy on a CASP14 test set with
pLDDT ranking over 5 model predictions (some CASP targets were run with earlier
versions of AlphaFold and some had manual interventions; see our forthcoming
publication for details). Some targets such as T1064 may also have high
individual run variance over random seeds.
## Inferencing many proteins
The provided inference script is optimized for predicting the structure of a
single protein, and it will compile the neural network to be specialized to
exactly the size of the sequence, MSA, and templates. For large proteins, the
compile time is a negligible fraction of the runtime, but it may become more
significant for small proteins or if the multi-sequence alignments are already
precomputed. In the bulk inference case, it may make sense to use our
`make_fixed_size` function to pad the inputs to a uniform size, thereby reducing
the number of compilations required.
We do not provide a bulk inference script, but it should be straightforward to
develop on top of the `RunModel.predict` method with a parallel system for
precomputing multi-sequence alignments. Alternatively, this script can be run
repeatedly with only moderate overhead.
## Note on reproducibility
AlphaFold's output for a small number of proteins has high inter-run variance,
and may be affected by changes in the input data. The CASP14 target T1064 is a
notable example; the large number of SARS-CoV-2-related sequences recently
deposited changes its MSA significantly. This variability is somewhat mitigated
by the model selection process; running 5 models and taking the most confident.
To reproduce the results of our CASP14 system as closely as possible you must
use the same database versions we used in CASP. These may not match the default
versions downloaded by our scripts.
For genetics:
* UniRef90:
[v2020_01](https://ftp.uniprot.org/pub/databases/uniprot/previous_releases/release-2020_01/uniref/)
* MGnify:
[v2018_12](http://ftp.ebi.ac.uk/pub/databases/metagenomics/peptide_database/2018_12/)
* Uniclust30: [v2018_08](http://wwwuser.gwdg.de/~compbiol/uniclust/2018_08/)
* BFD: [only version available](https://bfd.mmseqs.com/)
For templates:
* PDB: (downloaded 2020-05-14)
* PDB70: (downloaded 2020-05-13)
An alternative for templates is to use the latest PDB and PDB70, but pass the
flag `--max_template_date=2020-05-14`, which restricts templates only to
structures that were available at the start of CASP14.
## Citing this work
If you use the code or data in this package, please cite:
```tex
@Article{AlphaFold2021,
author = {Jumper, John and Evans, Richard and Pritzel, Alexander and Green, Tim and Figurnov, Michael and Ronneberger, Olaf and Tunyasuvunakool, Kathryn and Bates, Russ and {\v{Z}}{\'\i}dek, Augustin and Potapenko, Anna and Bridgland, Alex and Meyer, Clemens and Kohl, Simon A A and Ballard, Andrew J and Cowie, Andrew and Romera-Paredes, Bernardino and Nikolov, Stanislav and Jain, Rishub and Adler, Jonas and Back, Trevor and Petersen, Stig and Reiman, David and Clancy, Ellen and Zielinski, Michal and Steinegger, Martin and Pacholska, Michalina and Berghammer, Tamas and Bodenstein, Sebastian and Silver, David and Vinyals, Oriol and Senior, Andrew W and Kavukcuoglu, Koray and Kohli, Pushmeet and Hassabis, Demis},
journal = {Nature},
title = {Highly accurate protein structure prediction with {AlphaFold}},
year = {2021},
doi = {10.1038/s41586-021-03819-2},
note = {(Accelerated article preview)},
}
```
## Acknowledgements
AlphaFold communicates with and/or references the following separate libraries
and packages:
* [Abseil](https://github.com/abseil/abseil-py)
* [Biopython](https://biopython.org)
* [Chex](https://github.com/deepmind/chex)
* [Docker](https://www.docker.com)
* [HH Suite](https://github.com/soedinglab/hh-suite)
* [HMMER Suite](http://eddylab.org/software/hmmer)
* [Haiku](https://github.com/deepmind/dm-haiku)
* [Immutabledict](https://github.com/corenting/immutabledict)
* [JAX](https://github.com/google/jax/)
* [Kalign](https://msa.sbc.su.se/cgi-bin/msa.cgi)
* [ML Collections](https://github.com/google/ml_collections)
* [NumPy](https://numpy.org)
* [OpenMM](https://github.com/openmm/openmm)
* [OpenStructure](https://openstructure.org)
* [SciPy](https://scipy.org)
* [Sonnet](https://github.com/deepmind/sonnet)
* [TensorFlow](https://github.com/tensorflow/tensorflow)
* [Tree](https://github.com/deepmind/tree)
We thank all their contributors and maintainers!
## License and Disclaimer
This is not an officially supported Google product.
Copyright 2021 DeepMind Technologies Limited.
### AlphaFold Code License
Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License. You may obtain a copy of the
License at https://www.apache.org/licenses/LICENSE-2.0.
Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
### Model Parameters License
The AlphaFold parameters are made available for non-commercial use only, under
the terms of the Creative Commons Attribution-NonCommercial 4.0 International
(CC BY-NC 4.0) license. You can find details at:
https://creativecommons.org/licenses/by-nc/4.0/legalcode
### Third-party software
Use of the third-party software, libraries or code referred to in the
[Acknowledgements](#acknowledgements) section above may be governed by separate
terms and conditions or license provisions. Your use of the third-party
software, libraries or code is subject to any such terms and you should check
that you can comply with any applicable restrictions or terms and conditions
before use.
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""An implementation of the inference pipeline of AlphaFold v2.0."""
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Common data types and constants used within Alphafold."""
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Functions for processing confidence metrics."""
from typing import Dict, Optional, Tuple
import numpy as np
import scipy.special
def compute_plddt(logits: np.ndarray) -> np.ndarray:
"""Computes per-residue pLDDT from logits.
Args:
logits: [num_res, num_bins] output from the PredictedLDDTHead.
Returns:
plddt: [num_res] per-residue pLDDT.
"""
num_bins = logits.shape[-1]
bin_width = 1.0 / num_bins
bin_centers = np.arange(start=0.5 * bin_width, stop=1.0, step=bin_width)
probs = scipy.special.softmax(logits, axis=-1)
predicted_lddt_ca = np.sum(probs * bin_centers[None, :], axis=-1)
return predicted_lddt_ca * 100
def _calculate_bin_centers(breaks: np.ndarray):
"""Gets the bin centers from the bin edges.
Args:
breaks: [num_bins - 1] the error bin edges.
Returns:
bin_centers: [num_bins] the error bin centers.
"""
step = (breaks[1] - breaks[0])
# Add half-step to get the center
bin_centers = breaks + step / 2
# Add a catch-all bin at the end.
bin_centers = np.concatenate([bin_centers, [bin_centers[-1] + step]],
axis=0)
return bin_centers
def _calculate_expected_aligned_error(
alignment_confidence_breaks: np.ndarray,
aligned_distance_error_probs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""Calculates expected aligned distance errors for every pair of residues.
Args:
alignment_confidence_breaks: [num_bins - 1] the error bin edges.
aligned_distance_error_probs: [num_res, num_res, num_bins] the predicted
probs for each error bin, for each pair of residues.
Returns:
predicted_aligned_error: [num_res, num_res] the expected aligned distance
error for each pair of residues.
max_predicted_aligned_error: The maximum predicted error possible.
"""
bin_centers = _calculate_bin_centers(alignment_confidence_breaks)
# Tuple of expected aligned distance error and max possible error.
return (np.sum(aligned_distance_error_probs * bin_centers, axis=-1),
np.asarray(bin_centers[-1]))
def compute_predicted_aligned_error(
logits: np.ndarray,
breaks: np.ndarray) -> Dict[str, np.ndarray]:
"""Computes aligned confidence metrics from logits.
Args:
logits: [num_res, num_res, num_bins] the logits output from
PredictedAlignedErrorHead.
breaks: [num_bins - 1] the error bin edges.
Returns:
aligned_confidence_probs: [num_res, num_res, num_bins] the predicted
aligned error probabilities over bins for each residue pair.
predicted_aligned_error: [num_res, num_res] the expected aligned distance
error for each pair of residues.
max_predicted_aligned_error: The maximum predicted error possible.
"""
aligned_confidence_probs = scipy.special.softmax(
logits,
axis=-1)
predicted_aligned_error, max_predicted_aligned_error = (
_calculate_expected_aligned_error(
alignment_confidence_breaks=breaks,
aligned_distance_error_probs=aligned_confidence_probs))
return {
'aligned_confidence_probs': aligned_confidence_probs,
'predicted_aligned_error': predicted_aligned_error,
'max_predicted_aligned_error': max_predicted_aligned_error,
}
def predicted_tm_score(
logits: np.ndarray,
breaks: np.ndarray,
residue_weights: Optional[np.ndarray] = None) -> np.ndarray:
"""Computes predicted TM alignment score.
Args:
logits: [num_res, num_res, num_bins] the logits output from
PredictedAlignedErrorHead.
breaks: [num_bins] the error bins.
residue_weights: [num_res] the per residue weights to use for the
expectation.
Returns:
ptm_score: the predicted TM alignment score.
"""
# residue_weights has to be in [0, 1], but can be floating-point, i.e. the
# exp. resolved head's probability.
if residue_weights is None:
residue_weights = np.ones(logits.shape[0])
bin_centers = _calculate_bin_centers(breaks)
num_res = np.sum(residue_weights)
# Clip num_res to avoid negative/undefined d0.
clipped_num_res = max(num_res, 19)
# Compute d_0(num_res) as defined by TM-score, eqn. (5) in
# http://zhanglab.ccmb.med.umich.edu/papers/2004_3.pdf
# Yang & Skolnick "Scoring function for automated
# assessment of protein structure template quality" 2004
d0 = 1.24 * (clipped_num_res - 15) ** (1./3) - 1.8
# Convert logits to probs
probs = scipy.special.softmax(logits, axis=-1)
# TM-Score term for every bin
tm_per_bin = 1. / (1 + np.square(bin_centers) / np.square(d0))
# E_distances tm(distance)
predicted_tm_term = np.sum(probs * tm_per_bin, axis=-1)
normed_residue_mask = residue_weights / (1e-8 + residue_weights.sum())
per_alignment = np.sum(predicted_tm_term * normed_residue_mask, axis=-1)
return np.asarray(per_alignment[(per_alignment * residue_weights).argmax()])
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Protein data type."""
import io
from typing import Any, Mapping, Optional
from Bio.PDB import PDBParser
import dataclasses
import numpy as np
from alphafold.common import residue_constants
FeatureDict = Mapping[str, np.ndarray]
ModelOutput = Mapping[str, Any] # Is a nested dict.
@dataclasses.dataclass(frozen=True)
class Protein:
"""Protein structure representation."""
# Cartesian coordinates of atoms in angstroms. The atom types correspond to
# residue_constants.atom_types, i.e. the first three are N, CA, CB.
atom_positions: np.ndarray # [num_res, num_atom_type, 3]
# Amino-acid type for each residue represented as an integer between 0 and
# 20, where 20 is 'X'.
aatype: np.ndarray # [num_res]
# Binary float mask to indicate presence of a particular atom. 1.0 if an atom
# is present and 0.0 if not. This should be used for loss masking.
atom_mask: np.ndarray # [num_res, num_atom_type]
# Residue index as used in PDB. It is not necessarily continuous or 0-indexed.
residue_index: np.ndarray # [num_res]
# B-factors, or temperature factors, of each residue (in sq. angstroms units),
# representing the displacement of the residue from its ground truth mean
# value.
b_factors: np.ndarray # [num_res, num_atom_type]
def from_pdb_string(pdb_str: str, chain_id: Optional[str] = None) -> Protein:
"""Takes a PDB string and constructs a Protein object.
WARNING: All non-standard residue types will be converted into UNK. All
non-standard atoms will be ignored.
Args:
pdb_str: The contents of the pdb file
chain_id: If None, then the pdb file must contain a single chain (which
will be parsed). If chain_id is specified (e.g. A), then only that chain
is parsed.
Returns:
A new `Protein` parsed from the pdb contents.
"""
pdb_fh = io.StringIO(pdb_str)
parser = PDBParser()
structure = parser.get_structure('none', pdb_fh)
models = list(structure.get_models())
if len(models) != 1:
raise ValueError(
f'Only single model PDBs are supported. Found {len(models)} models.')
model = models[0]
if chain_id is not None:
chain = model[chain_id]
else:
chains = list(model.get_chains())
if len(chains) != 1:
raise ValueError(
'Only single chain PDBs are supported when chain_id not specified. '
f'Found {len(chains)} chains.')
else:
chain = chains[0]
atom_positions = []
aatype = []
atom_mask = []
residue_index = []
b_factors = []
for res in chain:
if res.id[2] != ' ':
raise ValueError(
f'PDB contains an insertion code at chain {chain.id} and residue '
f'index {res.id[1]}. These are not supported.')
res_shortname = residue_constants.restype_3to1.get(res.resname, 'X')
restype_idx = residue_constants.restype_order.get(
res_shortname, residue_constants.restype_num)
pos = np.zeros((residue_constants.atom_type_num, 3))
mask = np.zeros((residue_constants.atom_type_num,))
res_b_factors = np.zeros((residue_constants.atom_type_num,))
for atom in res:
if atom.name not in residue_constants.atom_types:
continue
pos[residue_constants.atom_order[atom.name]] = atom.coord
mask[residue_constants.atom_order[atom.name]] = 1.
res_b_factors[residue_constants.atom_order[atom.name]] = atom.bfactor
if np.sum(mask) < 0.5:
# If no known atom positions are reported for the residue then skip it.
continue
aatype.append(restype_idx)
atom_positions.append(pos)
atom_mask.append(mask)
residue_index.append(res.id[1])
b_factors.append(res_b_factors)
return Protein(
atom_positions=np.array(atom_positions),
atom_mask=np.array(atom_mask),
aatype=np.array(aatype),
residue_index=np.array(residue_index),
b_factors=np.array(b_factors))
def to_pdb(prot: Protein) -> str:
"""Converts a `Protein` instance to a PDB string.
Args:
prot: The protein to convert to PDB.
Returns:
PDB string.
"""
restypes = residue_constants.restypes + ['X']
res_1to3 = lambda r: residue_constants.restype_1to3.get(restypes[r], 'UNK')
atom_types = residue_constants.atom_types
pdb_lines = []
atom_mask = prot.atom_mask
aatype = prot.aatype
atom_positions = prot.atom_positions
residue_index = prot.residue_index.astype(np.int32)
b_factors = prot.b_factors
if np.any(aatype > residue_constants.restype_num):
raise ValueError('Invalid aatypes.')
pdb_lines.append('MODEL 1')
atom_index = 1
chain_id = 'A'
# Add all atom sites.
for i in range(aatype.shape[0]):
res_name_3 = res_1to3(aatype[i])
for atom_name, pos, mask, b_factor in zip(
atom_types, atom_positions[i], atom_mask[i], b_factors[i]):
if mask < 0.5:
continue
record_type = 'ATOM'
name = atom_name if len(atom_name) == 4 else f' {atom_name}'
alt_loc = ''
insertion_code = ''
occupancy = 1.00
element = atom_name[0] # Protein supports only C, N, O, S, this works.
charge = ''
# PDB is a columnar format, every space matters here!
atom_line = (f'{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}'
f'{res_name_3:>3} {chain_id:>1}'
f'{residue_index[i]:>4}{insertion_code:>1} '
f'{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}'
f'{occupancy:>6.2f}{b_factor:>6.2f} '
f'{element:>2}{charge:>2}')
pdb_lines.append(atom_line)
atom_index += 1
# Close the chain.
chain_end = 'TER'
chain_termination_line = (
f'{chain_end:<6}{atom_index:>5} {res_1to3(aatype[-1]):>3} '
f'{chain_id:>1}{residue_index[-1]:>4}')
pdb_lines.append(chain_termination_line)
pdb_lines.append('ENDMDL')
pdb_lines.append('END')
pdb_lines.append('')
return '\n'.join(pdb_lines)
def ideal_atom_mask(prot: Protein) -> np.ndarray:
"""Computes an ideal atom mask.
`Protein.atom_mask` typically is defined according to the atoms that are
reported in the PDB. This function computes a mask according to heavy atoms
that should be present in the given seqence of amino acids.
Args:
prot: `Protein` whose fields are `numpy.ndarray` objects.
Returns:
An ideal atom mask.
"""
return residue_constants.STANDARD_ATOM_MASK[prot.aatype]
def from_prediction(features: FeatureDict, result: ModelOutput) -> Protein:
"""Assembles a protein from a prediction.
Args:
features: Dictionary holding model inputs.
result: Dictionary holding model outputs.
Returns:
A protein instance.
"""
fold_output = result['structure_module']
dist_per_residue = np.zeros_like(fold_output['final_atom_mask'])
return Protein(
aatype=features['aatype'][0],
atom_positions=fold_output['final_atom_positions'],
atom_mask=fold_output['final_atom_mask'],
residue_index=features['residue_index'][0] + 1,
b_factors=dist_per_residue)
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for protein."""
import os
from absl.testing import absltest
from absl.testing import parameterized
import numpy as np
from alphafold.common import protein
from alphafold.common import residue_constants
# Internal import (7716).
TEST_DATA_DIR = 'alphafold/common/testdata/'
class ProteinTest(parameterized.TestCase):
def _check_shapes(self, prot, num_res):
"""Check that the processed shapes are correct."""
num_atoms = residue_constants.atom_type_num
self.assertEqual((num_res, num_atoms, 3), prot.atom_positions.shape)
self.assertEqual((num_res,), prot.aatype.shape)
self.assertEqual((num_res, num_atoms), prot.atom_mask.shape)
self.assertEqual((num_res,), prot.residue_index.shape)
self.assertEqual((num_res, num_atoms), prot.b_factors.shape)
@parameterized.parameters(('2rbg.pdb', 'A', 282),
('2rbg.pdb', 'B', 282))
def test_from_pdb_str(self, pdb_file, chain_id, num_res):
pdb_file = os.path.join(absltest.get_default_test_srcdir(), TEST_DATA_DIR,
pdb_file)
with open(pdb_file) as f:
pdb_string = f.read()
prot = protein.from_pdb_string(pdb_string, chain_id)
self._check_shapes(prot, num_res)
self.assertGreaterEqual(prot.aatype.min(), 0)
# Allow equal since unknown restypes have index equal to restype_num.
self.assertLessEqual(prot.aatype.max(), residue_constants.restype_num)
def test_to_pdb(self):
with open(
os.path.join(absltest.get_default_test_srcdir(), TEST_DATA_DIR,
'2rbg.pdb')) as f:
pdb_string = f.read()
prot = protein.from_pdb_string(pdb_string, chain_id='A')
pdb_string_reconstr = protein.to_pdb(prot)
prot_reconstr = protein.from_pdb_string(pdb_string_reconstr)
np.testing.assert_array_equal(prot_reconstr.aatype, prot.aatype)
np.testing.assert_array_almost_equal(
prot_reconstr.atom_positions, prot.atom_positions)
np.testing.assert_array_almost_equal(
prot_reconstr.atom_mask, prot.atom_mask)
np.testing.assert_array_equal(
prot_reconstr.residue_index, prot.residue_index)
np.testing.assert_array_almost_equal(
prot_reconstr.b_factors, prot.b_factors)
def test_ideal_atom_mask(self):
with open(
os.path.join(absltest.get_default_test_srcdir(), TEST_DATA_DIR,
'2rbg.pdb')) as f:
pdb_string = f.read()
prot = protein.from_pdb_string(pdb_string, chain_id='A')
ideal_mask = protein.ideal_atom_mask(prot)
non_ideal_residues = set([102] + list(range(127, 285)))
for i, (res, atom_mask) in enumerate(
zip(prot.residue_index, prot.atom_mask)):
if res in non_ideal_residues:
self.assertFalse(np.all(atom_mask == ideal_mask[i]), msg=f'{res}')
else:
self.assertTrue(np.all(atom_mask == ideal_mask[i]), msg=f'{res}')
if __name__ == '__main__':
absltest.main()
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Constants used in AlphaFold."""
import collections
import functools
from typing import Mapping, List, Tuple
import numpy as np
import tree
# Internal import (35fd).
# Distance from one CA to next CA [trans configuration: omega = 180].
ca_ca = 3.80209737096
# Format: The list for each AA type contains chi1, chi2, chi3, chi4 in
# this order (or a relevant subset from chi1 onwards). ALA and GLY don't have
# chi angles so their chi angle lists are empty.
chi_angles_atoms = {
'ALA': [],
# Chi5 in arginine is always 0 +- 5 degrees, so ignore it.
'ARG': [['N', 'CA', 'CB', 'CG'], ['CA', 'CB', 'CG', 'CD'],
['CB', 'CG', 'CD', 'NE'], ['CG', 'CD', 'NE', 'CZ']],
'ASN': [['N', 'CA', 'CB', 'CG'], ['CA', 'CB', 'CG', 'OD1']],
'ASP': [['N', 'CA', 'CB', 'CG'], ['CA', 'CB', 'CG', 'OD1']],
'CYS': [['N', 'CA', 'CB', 'SG']],
'GLN': [['N', 'CA', 'CB', 'CG'], ['CA', 'CB', 'CG', 'CD'],
['CB', 'CG', 'CD', 'OE1']],
'GLU': [['N', 'CA', 'CB', 'CG'], ['CA', 'CB', 'CG', 'CD'],
['CB', 'CG', 'CD', 'OE1']],
'GLY': [],
'HIS': [['N', 'CA', 'CB', 'CG'], ['CA', 'CB', 'CG', 'ND1']],
'ILE': [['N', 'CA', 'CB', 'CG1'], ['CA', 'CB', 'CG1', 'CD1']],
'LEU': [['N', 'CA', 'CB', 'CG'], ['CA', 'CB', 'CG', 'CD1']],
'LYS': [['N', 'CA', 'CB', 'CG'], ['CA', 'CB', 'CG', 'CD'],
['CB', 'CG', 'CD', 'CE'], ['CG', 'CD', 'CE', 'NZ']],
'MET': [['N', 'CA', 'CB', 'CG'], ['CA', 'CB', 'CG', 'SD'],
['CB', 'CG', 'SD', 'CE']],
'PHE': [['N', 'CA', 'CB', 'CG'], ['CA', 'CB', 'CG', 'CD1']],
'PRO': [['N', 'CA', 'CB', 'CG'], ['CA', 'CB', 'CG', 'CD']],
'SER': [['N', 'CA', 'CB', 'OG']],
'THR': [['N', 'CA', 'CB', 'OG1']],
'TRP': [['N', 'CA', 'CB', 'CG'], ['CA', 'CB', 'CG', 'CD1']],
'TYR': [['N', 'CA', 'CB', 'CG'], ['CA', 'CB', 'CG', 'CD1']],
'VAL': [['N', 'CA', 'CB', 'CG1']],
}
# If chi angles given in fixed-length array, this matrix determines how to mask
# them for each AA type. The order is as per restype_order (see below).
chi_angles_mask = [
[0.0, 0.0, 0.0, 0.0], # ALA
[1.0, 1.0, 1.0, 1.0], # ARG
[1.0, 1.0, 0.0, 0.0], # ASN
[1.0, 1.0, 0.0, 0.0], # ASP
[1.0, 0.0, 0.0, 0.0], # CYS
[1.0, 1.0, 1.0, 0.0], # GLN
[1.0, 1.0, 1.0, 0.0], # GLU
[0.0, 0.0, 0.0, 0.0], # GLY
[1.0, 1.0, 0.0, 0.0], # HIS
[1.0, 1.0, 0.0, 0.0], # ILE
[1.0, 1.0, 0.0, 0.0], # LEU
[1.0, 1.0, 1.0, 1.0], # LYS
[1.0, 1.0, 1.0, 0.0], # MET
[1.0, 1.0, 0.0, 0.0], # PHE
[1.0, 1.0, 0.0, 0.0], # PRO
[1.0, 0.0, 0.0, 0.0], # SER
[1.0, 0.0, 0.0, 0.0], # THR
[1.0, 1.0, 0.0, 0.0], # TRP
[1.0, 1.0, 0.0, 0.0], # TYR
[1.0, 0.0, 0.0, 0.0], # VAL
]
# The following chi angles are pi periodic: they can be rotated by a multiple
# of pi without affecting the structure.
chi_pi_periodic = [
[0.0, 0.0, 0.0, 0.0], # ALA
[0.0, 0.0, 0.0, 0.0], # ARG
[0.0, 0.0, 0.0, 0.0], # ASN
[0.0, 1.0, 0.0, 0.0], # ASP
[0.0, 0.0, 0.0, 0.0], # CYS
[0.0, 0.0, 0.0, 0.0], # GLN
[0.0, 0.0, 1.0, 0.0], # GLU
[0.0, 0.0, 0.0, 0.0], # GLY
[0.0, 0.0, 0.0, 0.0], # HIS
[0.0, 0.0, 0.0, 0.0], # ILE
[0.0, 0.0, 0.0, 0.0], # LEU
[0.0, 0.0, 0.0, 0.0], # LYS
[0.0, 0.0, 0.0, 0.0], # MET
[0.0, 1.0, 0.0, 0.0], # PHE
[0.0, 0.0, 0.0, 0.0], # PRO
[0.0, 0.0, 0.0, 0.0], # SER
[0.0, 0.0, 0.0, 0.0], # THR
[0.0, 0.0, 0.0, 0.0], # TRP
[0.0, 1.0, 0.0, 0.0], # TYR
[0.0, 0.0, 0.0, 0.0], # VAL
[0.0, 0.0, 0.0, 0.0], # UNK
]
# Atoms positions relative to the 8 rigid groups, defined by the pre-omega, phi,
# psi and chi angles:
# 0: 'backbone group',
# 1: 'pre-omega-group', (empty)
# 2: 'phi-group', (currently empty, because it defines only hydrogens)
# 3: 'psi-group',
# 4,5,6,7: 'chi1,2,3,4-group'
# The atom positions are relative to the axis-end-atom of the corresponding
# rotation axis. The x-axis is in direction of the rotation axis, and the y-axis
# is defined such that the dihedral-angle-definiting atom (the last entry in
# chi_angles_atoms above) is in the xy-plane (with a positive y-coordinate).
# format: [atomname, group_idx, rel_position]
rigid_group_atom_positions = {
'ALA': [
['N', 0, (-0.525, 1.363, 0.000)],
['CA', 0, (0.000, 0.000, 0.000)],
['C', 0, (1.526, -0.000, -0.000)],
['CB', 0, (-0.529, -0.774, -1.205)],
['O', 3, (0.627, 1.062, 0.000)],
],
'ARG': [
['N', 0, (-0.524, 1.362, -0.000)],
['CA', 0, (0.000, 0.000, 0.000)],
['C', 0, (1.525, -0.000, -0.000)],
['CB', 0, (-0.524, -0.778, -1.209)],
['O', 3, (0.626, 1.062, 0.000)],
['CG', 4, (0.616, 1.390, -0.000)],
['CD', 5, (0.564, 1.414, 0.000)],
['NE', 6, (0.539, 1.357, -0.000)],
['NH1', 7, (0.206, 2.301, 0.000)],
['NH2', 7, (2.078, 0.978, -0.000)],
['CZ', 7, (0.758, 1.093, -0.000)],
],
'ASN': [
['N', 0, (-0.536, 1.357, 0.000)],
['CA', 0, (0.000, 0.000, 0.000)],
['C', 0, (1.526, -0.000, -0.000)],
['CB', 0, (-0.531, -0.787, -1.200)],
['O', 3, (0.625, 1.062, 0.000)],
['CG', 4, (0.584, 1.399, 0.000)],
['ND2', 5, (0.593, -1.188, 0.001)],
['OD1', 5, (0.633, 1.059, 0.000)],
],
'ASP': [
['N', 0, (-0.525, 1.362, -0.000)],
['CA', 0, (0.000, 0.000, 0.000)],
['C', 0, (1.527, 0.000, -0.000)],
['CB', 0, (-0.526, -0.778, -1.208)],
['O', 3, (0.626, 1.062, -0.000)],
['CG', 4, (0.593, 1.398, -0.000)],
['OD1', 5, (0.610, 1.091, 0.000)],
['OD2', 5, (0.592, -1.101, -0.003)],
],
'CYS': [
['N', 0, (-0.522, 1.362, -0.000)],
['CA', 0, (0.000, 0.000, 0.000)],
['C', 0, (1.524, 0.000, 0.000)],
['CB', 0, (-0.519, -0.773, -1.212)],
['O', 3, (0.625, 1.062, -0.000)],
['SG', 4, (0.728, 1.653, 0.000)],
],
'GLN': [
['N', 0, (-0.526, 1.361, -0.000)],
['CA', 0, (0.000, 0.000, 0.000)],
['C', 0, (1.526, 0.000, 0.000)],
['CB', 0, (-0.525, -0.779, -1.207)],
['O', 3, (0.626, 1.062, -0.000)],
['CG', 4, (0.615, 1.393, 0.000)],
['CD', 5, (0.587, 1.399, -0.000)],
['NE2', 6, (0.593, -1.189, -0.001)],
['OE1', 6, (0.634, 1.060, 0.000)],
],
'GLU': [
['N', 0, (-0.528, 1.361, 0.000)],
['CA', 0, (0.000, 0.000, 0.000)],
['C', 0, (1.526, -0.000, -0.000)],
['CB', 0, (-0.526, -0.781, -1.207)],
['O', 3, (0.626, 1.062, 0.000)],
['CG', 4, (0.615, 1.392, 0.000)],
['CD', 5, (0.600, 1.397, 0.000)],
['OE1', 6, (0.607, 1.095, -0.000)],
['OE2', 6, (0.589, -1.104, -0.001)],
],
'GLY': [
['N', 0, (-0.572, 1.337, 0.000)],
['CA', 0, (0.000, 0.000, 0.000)],
['C', 0, (1.517, -0.000, -0.000)],
['O', 3, (0.626, 1.062, -0.000)],
],
'HIS': [
['N', 0, (-0.527, 1.360, 0.000)],
['CA', 0, (0.000, 0.000, 0.000)],
['C', 0, (1.525, 0.000, 0.000)],
['CB', 0, (-0.525, -0.778, -1.208)],
['O', 3, (0.625, 1.063, 0.000)],
['CG', 4, (0.600, 1.370, -0.000)],
['CD2', 5, (0.889, -1.021, 0.003)],
['ND1', 5, (0.744, 1.160, -0.000)],
['CE1', 5, (2.030, 0.851, 0.002)],
['NE2', 5, (2.145, -0.466, 0.004)],
],
'ILE': [
['N', 0, (-0.493, 1.373, -0.000)],
['CA', 0, (0.000, 0.000, 0.000)],
['C', 0, (1.527, -0.000, -0.000)],
['CB', 0, (-0.536, -0.793, -1.213)],
['O', 3, (0.627, 1.062, -0.000)],
['CG1', 4, (0.534, 1.437, -0.000)],
['CG2', 4, (0.540, -0.785, -1.199)],
['CD1', 5, (0.619, 1.391, 0.000)],
],
'LEU': [
['N', 0, (-0.520, 1.363, 0.000)],
['CA', 0, (0.000, 0.000, 0.000)],
['C', 0, (1.525, -0.000, -0.000)],
['CB', 0, (-0.522, -0.773, -1.214)],
['O', 3, (0.625, 1.063, -0.000)],
['CG', 4, (0.678, 1.371, 0.000)],
['CD1', 5, (0.530, 1.430, -0.000)],
['CD2', 5, (0.535, -0.774, 1.200)],
],
'LYS': [
['N', 0, (-0.526, 1.362, -0.000)],
['CA', 0, (0.000, 0.000, 0.000)],
['C', 0, (1.526, 0.000, 0.000)],
['CB', 0, (-0.524, -0.778, -1.208)],
['O', 3, (0.626, 1.062, -0.000)],
['CG', 4, (0.619, 1.390, 0.000)],
['CD', 5, (0.559, 1.417, 0.000)],
['CE', 6, (0.560, 1.416, 0.000)],
['NZ', 7, (0.554, 1.387, 0.000)],
],
'MET': [
['N', 0, (-0.521, 1.364, -0.000)],
['CA', 0, (0.000, 0.000, 0.000)],
['C', 0, (1.525, 0.000, 0.000)],
['CB', 0, (-0.523, -0.776, -1.210)],
['O', 3, (0.625, 1.062, -0.000)],
['CG', 4, (0.613, 1.391, -0.000)],
['SD', 5, (0.703, 1.695, 0.000)],
['CE', 6, (0.320, 1.786, -0.000)],
],
'PHE': [
['N', 0, (-0.518, 1.363, 0.000)],
['CA', 0, (0.000, 0.000, 0.000)],
['C', 0, (1.524, 0.000, -0.000)],
['CB', 0, (-0.525, -0.776, -1.212)],
['O', 3, (0.626, 1.062, -0.000)],
['CG', 4, (0.607, 1.377, 0.000)],
['CD1', 5, (0.709, 1.195, -0.000)],
['CD2', 5, (0.706, -1.196, 0.000)],
['CE1', 5, (2.102, 1.198, -0.000)],
['CE2', 5, (2.098, -1.201, -0.000)],
['CZ', 5, (2.794, -0.003, -0.001)],
],
'PRO': [
['N', 0, (-0.566, 1.351, -0.000)],
['CA', 0, (0.000, 0.000, 0.000)],
['C', 0, (1.527, -0.000, 0.000)],
['CB', 0, (-0.546, -0.611, -1.293)],
['O', 3, (0.621, 1.066, 0.000)],
['CG', 4, (0.382, 1.445, 0.0)],
# ['CD', 5, (0.427, 1.440, 0.0)],
['CD', 5, (0.477, 1.424, 0.0)], # manually made angle 2 degrees larger
],
'SER': [
['N', 0, (-0.529, 1.360, -0.000)],
['CA', 0, (0.000, 0.000, 0.000)],
['C', 0, (1.525, -0.000, -0.000)],
['CB', 0, (-0.518, -0.777, -1.211)],
['O', 3, (0.626, 1.062, -0.000)],
['OG', 4, (0.503, 1.325, 0.000)],
],
'THR': [
['N', 0, (-0.517, 1.364, 0.000)],
['CA', 0, (0.000, 0.000, 0.000)],
['C', 0, (1.526, 0.000, -0.000)],
['CB', 0, (-0.516, -0.793, -1.215)],
['O', 3, (0.626, 1.062, 0.000)],
['CG2', 4, (0.550, -0.718, -1.228)],
['OG1', 4, (0.472, 1.353, 0.000)],
],
'TRP': [
['N', 0, (-0.521, 1.363, 0.000)],
['CA', 0, (0.000, 0.000, 0.000)],
['C', 0, (1.525, -0.000, 0.000)],
['CB', 0, (-0.523, -0.776, -1.212)],
['O', 3, (0.627, 1.062, 0.000)],
['CG', 4, (0.609, 1.370, -0.000)],
['CD1', 5, (0.824, 1.091, 0.000)],
['CD2', 5, (0.854, -1.148, -0.005)],
['CE2', 5, (2.186, -0.678, -0.007)],
['CE3', 5, (0.622, -2.530, -0.007)],
['NE1', 5, (2.140, 0.690, -0.004)],
['CH2', 5, (3.028, -2.890, -0.013)],
['CZ2', 5, (3.283, -1.543, -0.011)],
['CZ3', 5, (1.715, -3.389, -0.011)],
],
'TYR': [
['N', 0, (-0.522, 1.362, 0.000)],
['CA', 0, (0.000, 0.000, 0.000)],
['C', 0, (1.524, -0.000, -0.000)],
['CB', 0, (-0.522, -0.776, -1.213)],
['O', 3, (0.627, 1.062, -0.000)],
['CG', 4, (0.607, 1.382, -0.000)],
['CD1', 5, (0.716, 1.195, -0.000)],
['CD2', 5, (0.713, -1.194, -0.001)],
['CE1', 5, (2.107, 1.200, -0.002)],
['CE2', 5, (2.104, -1.201, -0.003)],
['OH', 5, (4.168, -0.002, -0.005)],
['CZ', 5, (2.791, -0.001, -0.003)],
],
'VAL': [
['N', 0, (-0.494, 1.373, -0.000)],
['CA', 0, (0.000, 0.000, 0.000)],
['C', 0, (1.527, -0.000, -0.000)],
['CB', 0, (-0.533, -0.795, -1.213)],
['O', 3, (0.627, 1.062, -0.000)],
['CG1', 4, (0.540, 1.429, -0.000)],
['CG2', 4, (0.533, -0.776, 1.203)],
],
}
# A list of atoms (excluding hydrogen) for each AA type. PDB naming convention.
residue_atoms = {
'ALA': ['C', 'CA', 'CB', 'N', 'O'],
'ARG': ['C', 'CA', 'CB', 'CG', 'CD', 'CZ', 'N', 'NE', 'O', 'NH1', 'NH2'],
'ASP': ['C', 'CA', 'CB', 'CG', 'N', 'O', 'OD1', 'OD2'],
'ASN': ['C', 'CA', 'CB', 'CG', 'N', 'ND2', 'O', 'OD1'],
'CYS': ['C', 'CA', 'CB', 'N', 'O', 'SG'],
'GLU': ['C', 'CA', 'CB', 'CG', 'CD', 'N', 'O', 'OE1', 'OE2'],
'GLN': ['C', 'CA', 'CB', 'CG', 'CD', 'N', 'NE2', 'O', 'OE1'],
'GLY': ['C', 'CA', 'N', 'O'],
'HIS': ['C', 'CA', 'CB', 'CG', 'CD2', 'CE1', 'N', 'ND1', 'NE2', 'O'],
'ILE': ['C', 'CA', 'CB', 'CG1', 'CG2', 'CD1', 'N', 'O'],
'LEU': ['C', 'CA', 'CB', 'CG', 'CD1', 'CD2', 'N', 'O'],
'LYS': ['C', 'CA', 'CB', 'CG', 'CD', 'CE', 'N', 'NZ', 'O'],
'MET': ['C', 'CA', 'CB', 'CG', 'CE', 'N', 'O', 'SD'],
'PHE': ['C', 'CA', 'CB', 'CG', 'CD1', 'CD2', 'CE1', 'CE2', 'CZ', 'N', 'O'],
'PRO': ['C', 'CA', 'CB', 'CG', 'CD', 'N', 'O'],
'SER': ['C', 'CA', 'CB', 'N', 'O', 'OG'],
'THR': ['C', 'CA', 'CB', 'CG2', 'N', 'O', 'OG1'],
'TRP': ['C', 'CA', 'CB', 'CG', 'CD1', 'CD2', 'CE2', 'CE3', 'CZ2', 'CZ3',
'CH2', 'N', 'NE1', 'O'],
'TYR': ['C', 'CA', 'CB', 'CG', 'CD1', 'CD2', 'CE1', 'CE2', 'CZ', 'N', 'O',
'OH'],
'VAL': ['C', 'CA', 'CB', 'CG1', 'CG2', 'N', 'O']
}
# Naming swaps for ambiguous atom names.
# Due to symmetries in the amino acids the naming of atoms is ambiguous in
# 4 of the 20 amino acids.
# (The LDDT paper lists 7 amino acids as ambiguous, but the naming ambiguities
# in LEU, VAL and ARG can be resolved by using the 3d constellations of
# the 'ambiguous' atoms and their neighbours)
residue_atom_renaming_swaps = {
'ASP': {'OD1': 'OD2'},
'GLU': {'OE1': 'OE2'},
'PHE': {'CD1': 'CD2', 'CE1': 'CE2'},
'TYR': {'CD1': 'CD2', 'CE1': 'CE2'},
}
# Van der Waals radii [Angstroem] of the atoms (from Wikipedia)
van_der_waals_radius = {
'C': 1.7,
'N': 1.55,
'O': 1.52,
'S': 1.8,
}
Bond = collections.namedtuple(
'Bond', ['atom1_name', 'atom2_name', 'length', 'stddev'])
BondAngle = collections.namedtuple(
'BondAngle',
['atom1_name', 'atom2_name', 'atom3name', 'angle_rad', 'stddev'])
@functools.lru_cache(maxsize=None)
def load_stereo_chemical_props() -> Tuple[Mapping[str, List[Bond]],
Mapping[str, List[Bond]],
Mapping[str, List[BondAngle]]]:
"""Load stereo_chemical_props.txt into a nice structure.
Load literature values for bond lengths and bond angles and translate
bond angles into the length of the opposite edge of the triangle
("residue_virtual_bonds").
Returns:
residue_bonds: dict that maps resname --> list of Bond tuples
residue_virtual_bonds: dict that maps resname --> list of Bond tuples
residue_bond_angles: dict that maps resname --> list of BondAngle tuples
"""
stereo_chemical_props_path = (
'alphafold/common/stereo_chemical_props.txt')
with open(stereo_chemical_props_path, 'rt') as f:
stereo_chemical_props = f.read()
lines_iter = iter(stereo_chemical_props.splitlines())
# Load bond lengths.
residue_bonds = {}
next(lines_iter) # Skip header line.
for line in lines_iter:
if line.strip() == '-':
break
bond, resname, length, stddev = line.split()
atom1, atom2 = bond.split('-')
if resname not in residue_bonds:
residue_bonds[resname] = []
residue_bonds[resname].append(
Bond(atom1, atom2, float(length), float(stddev)))
residue_bonds['UNK'] = []
# Load bond angles.
residue_bond_angles = {}
next(lines_iter) # Skip empty line.
next(lines_iter) # Skip header line.
for line in lines_iter:
if line.strip() == '-':
break
bond, resname, angle_degree, stddev_degree = line.split()
atom1, atom2, atom3 = bond.split('-')
if resname not in residue_bond_angles:
residue_bond_angles[resname] = []
residue_bond_angles[resname].append(
BondAngle(atom1, atom2, atom3,
float(angle_degree) / 180. * np.pi,
float(stddev_degree) / 180. * np.pi))
residue_bond_angles['UNK'] = []
def make_bond_key(atom1_name, atom2_name):
"""Unique key to lookup bonds."""
return '-'.join(sorted([atom1_name, atom2_name]))
# Translate bond angles into distances ("virtual bonds").
residue_virtual_bonds = {}
for resname, bond_angles in residue_bond_angles.items():
# Create a fast lookup dict for bond lengths.
bond_cache = {}
for b in residue_bonds[resname]:
bond_cache[make_bond_key(b.atom1_name, b.atom2_name)] = b
residue_virtual_bonds[resname] = []
for ba in bond_angles:
bond1 = bond_cache[make_bond_key(ba.atom1_name, ba.atom2_name)]
bond2 = bond_cache[make_bond_key(ba.atom2_name, ba.atom3name)]
# Compute distance between atom1 and atom3 using the law of cosines
# c^2 = a^2 + b^2 - 2ab*cos(gamma).
gamma = ba.angle_rad
length = np.sqrt(bond1.length**2 + bond2.length**2
- 2 * bond1.length * bond2.length * np.cos(gamma))
# Propagation of uncertainty assuming uncorrelated errors.
dl_outer = 0.5 / length
dl_dgamma = (2 * bond1.length * bond2.length * np.sin(gamma)) * dl_outer
dl_db1 = (2 * bond1.length - 2 * bond2.length * np.cos(gamma)) * dl_outer
dl_db2 = (2 * bond2.length - 2 * bond1.length * np.cos(gamma)) * dl_outer
stddev = np.sqrt((dl_dgamma * ba.stddev)**2 +
(dl_db1 * bond1.stddev)**2 +
(dl_db2 * bond2.stddev)**2)
residue_virtual_bonds[resname].append(
Bond(ba.atom1_name, ba.atom3name, length, stddev))
return (residue_bonds,
residue_virtual_bonds,
residue_bond_angles)
# Between-residue bond lengths for general bonds (first element) and for Proline
# (second element).
between_res_bond_length_c_n = [1.329, 1.341]
between_res_bond_length_stddev_c_n = [0.014, 0.016]
# Between-residue cos_angles.
between_res_cos_angles_c_n_ca = [-0.5203, 0.0353] # degrees: 121.352 +- 2.315
between_res_cos_angles_ca_c_n = [-0.4473, 0.0311] # degrees: 116.568 +- 1.995
# This mapping is used when we need to store atom data in a format that requires
# fixed atom data size for every residue (e.g. a numpy array).
atom_types = [
'N', 'CA', 'C', 'CB', 'O', 'CG', 'CG1', 'CG2', 'OG', 'OG1', 'SG', 'CD',
'CD1', 'CD2', 'ND1', 'ND2', 'OD1', 'OD2', 'SD', 'CE', 'CE1', 'CE2', 'CE3',
'NE', 'NE1', 'NE2', 'OE1', 'OE2', 'CH2', 'NH1', 'NH2', 'OH', 'CZ', 'CZ2',
'CZ3', 'NZ', 'OXT'
]
atom_order = {atom_type: i for i, atom_type in enumerate(atom_types)}
atom_type_num = len(atom_types) # := 37.
# A compact atom encoding with 14 columns
# pylint: disable=line-too-long
# pylint: disable=bad-whitespace
restype_name_to_atom14_names = {
'ALA': ['N', 'CA', 'C', 'O', 'CB', '', '', '', '', '', '', '', '', ''],
'ARG': ['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD', 'NE', 'CZ', 'NH1', 'NH2', '', '', ''],
'ASN': ['N', 'CA', 'C', 'O', 'CB', 'CG', 'OD1', 'ND2', '', '', '', '', '', ''],
'ASP': ['N', 'CA', 'C', 'O', 'CB', 'CG', 'OD1', 'OD2', '', '', '', '', '', ''],
'CYS': ['N', 'CA', 'C', 'O', 'CB', 'SG', '', '', '', '', '', '', '', ''],
'GLN': ['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD', 'OE1', 'NE2', '', '', '', '', ''],
'GLU': ['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD', 'OE1', 'OE2', '', '', '', '', ''],
'GLY': ['N', 'CA', 'C', 'O', '', '', '', '', '', '', '', '', '', ''],
'HIS': ['N', 'CA', 'C', 'O', 'CB', 'CG', 'ND1', 'CD2', 'CE1', 'NE2', '', '', '', ''],
'ILE': ['N', 'CA', 'C', 'O', 'CB', 'CG1', 'CG2', 'CD1', '', '', '', '', '', ''],
'LEU': ['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD1', 'CD2', '', '', '', '', '', ''],
'LYS': ['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD', 'CE', 'NZ', '', '', '', '', ''],
'MET': ['N', 'CA', 'C', 'O', 'CB', 'CG', 'SD', 'CE', '', '', '', '', '', ''],
'PHE': ['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD1', 'CD2', 'CE1', 'CE2', 'CZ', '', '', ''],
'PRO': ['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD', '', '', '', '', '', '', ''],
'SER': ['N', 'CA', 'C', 'O', 'CB', 'OG', '', '', '', '', '', '', '', ''],
'THR': ['N', 'CA', 'C', 'O', 'CB', 'OG1', 'CG2', '', '', '', '', '', '', ''],
'TRP': ['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD1', 'CD2', 'NE1', 'CE2', 'CE3', 'CZ2', 'CZ3', 'CH2'],
'TYR': ['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD1', 'CD2', 'CE1', 'CE2', 'CZ', 'OH', '', ''],
'VAL': ['N', 'CA', 'C', 'O', 'CB', 'CG1', 'CG2', '', '', '', '', '', '', ''],
'UNK': ['', '', '', '', '', '', '', '', '', '', '', '', '', ''],
}
# pylint: enable=line-too-long
# pylint: enable=bad-whitespace
# This is the standard residue order when coding AA type as a number.
# Reproduce it by taking 3-letter AA codes and sorting them alphabetically.
restypes = [
'A', 'R', 'N', 'D', 'C', 'Q', 'E', 'G', 'H', 'I', 'L', 'K', 'M', 'F', 'P',
'S', 'T', 'W', 'Y', 'V'
]
restype_order = {restype: i for i, restype in enumerate(restypes)}
restype_num = len(restypes) # := 20.
unk_restype_index = restype_num # Catch-all index for unknown restypes.
restypes_with_x = restypes + ['X']
restype_order_with_x = {restype: i for i, restype in enumerate(restypes_with_x)}
def sequence_to_onehot(
sequence: str,
mapping: Mapping[str, int],
map_unknown_to_x: bool = False) -> np.ndarray:
"""Maps the given sequence into a one-hot encoded matrix.
Args:
sequence: An amino acid sequence.
mapping: A dictionary mapping amino acids to integers.
map_unknown_to_x: If True, any amino acid that is not in the mapping will be
mapped to the unknown amino acid 'X'. If the mapping doesn't contain
amino acid 'X', an error will be thrown. If False, any amino acid not in
the mapping will throw an error.
Returns:
A numpy array of shape (seq_len, num_unique_aas) with one-hot encoding of
the sequence.
Raises:
ValueError: If the mapping doesn't contain values from 0 to
num_unique_aas - 1 without any gaps.
"""
num_entries = max(mapping.values()) + 1
if sorted(set(mapping.values())) != list(range(num_entries)):
raise ValueError('The mapping must have values from 0 to num_unique_aas-1 '
'without any gaps. Got: %s' % sorted(mapping.values()))
one_hot_arr = np.zeros((len(sequence), num_entries), dtype=np.int32)
for aa_index, aa_type in enumerate(sequence):
if map_unknown_to_x:
if aa_type.isalpha() and aa_type.isupper():
aa_id = mapping.get(aa_type, mapping['X'])
else:
raise ValueError(f'Invalid character in the sequence: {aa_type}')
else:
aa_id = mapping[aa_type]
one_hot_arr[aa_index, aa_id] = 1
return one_hot_arr
restype_1to3 = {
'A': 'ALA',
'R': 'ARG',
'N': 'ASN',
'D': 'ASP',
'C': 'CYS',
'Q': 'GLN',
'E': 'GLU',
'G': 'GLY',
'H': 'HIS',
'I': 'ILE',
'L': 'LEU',
'K': 'LYS',
'M': 'MET',
'F': 'PHE',
'P': 'PRO',
'S': 'SER',
'T': 'THR',
'W': 'TRP',
'Y': 'TYR',
'V': 'VAL',
}
# NB: restype_3to1 differs from Bio.PDB.protein_letters_3to1 by being a simple
# 1-to-1 mapping of 3 letter names to one letter names. The latter contains
# many more, and less common, three letter names as keys and maps many of these
# to the same one letter name (including 'X' and 'U' which we don't use here).
restype_3to1 = {v: k for k, v in restype_1to3.items()}
# Define a restype name for all unknown residues.
unk_restype = 'UNK'
resnames = [restype_1to3[r] for r in restypes] + [unk_restype]
resname_to_idx = {resname: i for i, resname in enumerate(resnames)}
# The mapping here uses hhblits convention, so that B is mapped to D, J and O
# are mapped to X, U is mapped to C, and Z is mapped to E. Other than that the
# remaining 20 amino acids are kept in alphabetical order.
# There are 2 non-amino acid codes, X (representing any amino acid) and
# "-" representing a missing amino acid in an alignment. The id for these
# codes is put at the end (20 and 21) so that they can easily be ignored if
# desired.
HHBLITS_AA_TO_ID = {
'A': 0,
'B': 2,
'C': 1,
'D': 2,
'E': 3,
'F': 4,
'G': 5,
'H': 6,
'I': 7,
'J': 20,
'K': 8,
'L': 9,
'M': 10,
'N': 11,
'O': 20,
'P': 12,
'Q': 13,
'R': 14,
'S': 15,
'T': 16,
'U': 1,
'V': 17,
'W': 18,
'X': 20,
'Y': 19,
'Z': 3,
'-': 21,
}
# Partial inversion of HHBLITS_AA_TO_ID.
ID_TO_HHBLITS_AA = {
0: 'A',
1: 'C', # Also U.
2: 'D', # Also B.
3: 'E', # Also Z.
4: 'F',
5: 'G',
6: 'H',
7: 'I',
8: 'K',
9: 'L',
10: 'M',
11: 'N',
12: 'P',
13: 'Q',
14: 'R',
15: 'S',
16: 'T',
17: 'V',
18: 'W',
19: 'Y',
20: 'X', # Includes J and O.
21: '-',
}
restypes_with_x_and_gap = restypes + ['X', '-']
MAP_HHBLITS_AATYPE_TO_OUR_AATYPE = tuple(
restypes_with_x_and_gap.index(ID_TO_HHBLITS_AA[i])
for i in range(len(restypes_with_x_and_gap)))
def _make_standard_atom_mask() -> np.ndarray:
"""Returns [num_res_types, num_atom_types] mask array."""
# +1 to account for unknown (all 0s).
mask = np.zeros([restype_num + 1, atom_type_num], dtype=np.int32)
for restype, restype_letter in enumerate(restypes):
restype_name = restype_1to3[restype_letter]
atom_names = residue_atoms[restype_name]
for atom_name in atom_names:
atom_type = atom_order[atom_name]
mask[restype, atom_type] = 1
return mask
STANDARD_ATOM_MASK = _make_standard_atom_mask()
# A one hot representation for the first and second atoms defining the axis
# of rotation for each chi-angle in each residue.
def chi_angle_atom(atom_index: int) -> np.ndarray:
"""Define chi-angle rigid groups via one-hot representations."""
chi_angles_index = {}
one_hots = []
for k, v in chi_angles_atoms.items():
indices = [atom_types.index(s[atom_index]) for s in v]
indices.extend([-1]*(4-len(indices)))
chi_angles_index[k] = indices
for r in restypes:
res3 = restype_1to3[r]
one_hot = np.eye(atom_type_num)[chi_angles_index[res3]]
one_hots.append(one_hot)
one_hots.append(np.zeros([4, atom_type_num])) # Add zeros for residue `X`.
one_hot = np.stack(one_hots, axis=0)
one_hot = np.transpose(one_hot, [0, 2, 1])
return one_hot
chi_atom_1_one_hot = chi_angle_atom(1)
chi_atom_2_one_hot = chi_angle_atom(2)
# An array like chi_angles_atoms but using indices rather than names.
chi_angles_atom_indices = [chi_angles_atoms[restype_1to3[r]] for r in restypes]
chi_angles_atom_indices = tree.map_structure(
lambda atom_name: atom_order[atom_name], chi_angles_atom_indices)
chi_angles_atom_indices = np.array([
chi_atoms + ([[0, 0, 0, 0]] * (4 - len(chi_atoms)))
for chi_atoms in chi_angles_atom_indices])
# Mapping from (res_name, atom_name) pairs to the atom's chi group index
# and atom index within that group.
chi_groups_for_atom = collections.defaultdict(list)
for res_name, chi_angle_atoms_for_res in chi_angles_atoms.items():
for chi_group_i, chi_group in enumerate(chi_angle_atoms_for_res):
for atom_i, atom in enumerate(chi_group):
chi_groups_for_atom[(res_name, atom)].append((chi_group_i, atom_i))
chi_groups_for_atom = dict(chi_groups_for_atom)
def _make_rigid_transformation_4x4(ex, ey, translation):
"""Create a rigid 4x4 transformation matrix from two axes and transl."""
# Normalize ex.
ex_normalized = ex / np.linalg.norm(ex)
# make ey perpendicular to ex
ey_normalized = ey - np.dot(ey, ex_normalized) * ex_normalized
ey_normalized /= np.linalg.norm(ey_normalized)
# compute ez as cross product
eznorm = np.cross(ex_normalized, ey_normalized)
m = np.stack([ex_normalized, ey_normalized, eznorm, translation]).transpose()
m = np.concatenate([m, [[0., 0., 0., 1.]]], axis=0)
return m
# create an array with (restype, atomtype) --> rigid_group_idx
# and an array with (restype, atomtype, coord) for the atom positions
# and compute affine transformation matrices (4,4) from one rigid group to the
# previous group
restype_atom37_to_rigid_group = np.zeros([21, 37], dtype=np.int)
restype_atom37_mask = np.zeros([21, 37], dtype=np.float32)
restype_atom37_rigid_group_positions = np.zeros([21, 37, 3], dtype=np.float32)
restype_atom14_to_rigid_group = np.zeros([21, 14], dtype=np.int)
restype_atom14_mask = np.zeros([21, 14], dtype=np.float32)
restype_atom14_rigid_group_positions = np.zeros([21, 14, 3], dtype=np.float32)
restype_rigid_group_default_frame = np.zeros([21, 8, 4, 4], dtype=np.float32)
def _make_rigid_group_constants():
"""Fill the arrays above."""
for restype, restype_letter in enumerate(restypes):
resname = restype_1to3[restype_letter]
for atomname, group_idx, atom_position in rigid_group_atom_positions[
resname]:
atomtype = atom_order[atomname]
restype_atom37_to_rigid_group[restype, atomtype] = group_idx
restype_atom37_mask[restype, atomtype] = 1
restype_atom37_rigid_group_positions[restype, atomtype, :] = atom_position
atom14idx = restype_name_to_atom14_names[resname].index(atomname)
restype_atom14_to_rigid_group[restype, atom14idx] = group_idx
restype_atom14_mask[restype, atom14idx] = 1
restype_atom14_rigid_group_positions[restype,
atom14idx, :] = atom_position
for restype, restype_letter in enumerate(restypes):
resname = restype_1to3[restype_letter]
atom_positions = {name: np.array(pos) for name, _, pos
in rigid_group_atom_positions[resname]}
# backbone to backbone is the identity transform
restype_rigid_group_default_frame[restype, 0, :, :] = np.eye(4)
# pre-omega-frame to backbone (currently dummy identity matrix)
restype_rigid_group_default_frame[restype, 1, :, :] = np.eye(4)
# phi-frame to backbone
mat = _make_rigid_transformation_4x4(
ex=atom_positions['N'] - atom_positions['CA'],
ey=np.array([1., 0., 0.]),
translation=atom_positions['N'])
restype_rigid_group_default_frame[restype, 2, :, :] = mat
# psi-frame to backbone
mat = _make_rigid_transformation_4x4(
ex=atom_positions['C'] - atom_positions['CA'],
ey=atom_positions['CA'] - atom_positions['N'],
translation=atom_positions['C'])
restype_rigid_group_default_frame[restype, 3, :, :] = mat
# chi1-frame to backbone
if chi_angles_mask[restype][0]:
base_atom_names = chi_angles_atoms[resname][0]
base_atom_positions = [atom_positions[name] for name in base_atom_names]
mat = _make_rigid_transformation_4x4(
ex=base_atom_positions[2] - base_atom_positions[1],
ey=base_atom_positions[0] - base_atom_positions[1],
translation=base_atom_positions[2])
restype_rigid_group_default_frame[restype, 4, :, :] = mat
# chi2-frame to chi1-frame
# chi3-frame to chi2-frame
# chi4-frame to chi3-frame
# luckily all rotation axes for the next frame start at (0,0,0) of the
# previous frame
for chi_idx in range(1, 4):
if chi_angles_mask[restype][chi_idx]:
axis_end_atom_name = chi_angles_atoms[resname][chi_idx][2]
axis_end_atom_position = atom_positions[axis_end_atom_name]
mat = _make_rigid_transformation_4x4(
ex=axis_end_atom_position,
ey=np.array([-1., 0., 0.]),
translation=axis_end_atom_position)
restype_rigid_group_default_frame[restype, 4 + chi_idx, :, :] = mat
_make_rigid_group_constants()
def make_atom14_dists_bounds(overlap_tolerance=1.5,
bond_length_tolerance_factor=15):
"""compute upper and lower bounds for bonds to assess violations."""
restype_atom14_bond_lower_bound = np.zeros([21, 14, 14], np.float32)
restype_atom14_bond_upper_bound = np.zeros([21, 14, 14], np.float32)
restype_atom14_bond_stddev = np.zeros([21, 14, 14], np.float32)
residue_bonds, residue_virtual_bonds, _ = load_stereo_chemical_props()
for restype, restype_letter in enumerate(restypes):
resname = restype_1to3[restype_letter]
atom_list = restype_name_to_atom14_names[resname]
# create lower and upper bounds for clashes
for atom1_idx, atom1_name in enumerate(atom_list):
if not atom1_name:
continue
atom1_radius = van_der_waals_radius[atom1_name[0]]
for atom2_idx, atom2_name in enumerate(atom_list):
if (not atom2_name) or atom1_idx == atom2_idx:
continue
atom2_radius = van_der_waals_radius[atom2_name[0]]
lower = atom1_radius + atom2_radius - overlap_tolerance
upper = 1e10
restype_atom14_bond_lower_bound[restype, atom1_idx, atom2_idx] = lower
restype_atom14_bond_lower_bound[restype, atom2_idx, atom1_idx] = lower
restype_atom14_bond_upper_bound[restype, atom1_idx, atom2_idx] = upper
restype_atom14_bond_upper_bound[restype, atom2_idx, atom1_idx] = upper
# overwrite lower and upper bounds for bonds and angles
for b in residue_bonds[resname] + residue_virtual_bonds[resname]:
atom1_idx = atom_list.index(b.atom1_name)
atom2_idx = atom_list.index(b.atom2_name)
lower = b.length - bond_length_tolerance_factor * b.stddev
upper = b.length + bond_length_tolerance_factor * b.stddev
restype_atom14_bond_lower_bound[restype, atom1_idx, atom2_idx] = lower
restype_atom14_bond_lower_bound[restype, atom2_idx, atom1_idx] = lower
restype_atom14_bond_upper_bound[restype, atom1_idx, atom2_idx] = upper
restype_atom14_bond_upper_bound[restype, atom2_idx, atom1_idx] = upper
restype_atom14_bond_stddev[restype, atom1_idx, atom2_idx] = b.stddev
restype_atom14_bond_stddev[restype, atom2_idx, atom1_idx] = b.stddev
return {'lower_bound': restype_atom14_bond_lower_bound, # shape (21,14,14)
'upper_bound': restype_atom14_bond_upper_bound, # shape (21,14,14)
'stddev': restype_atom14_bond_stddev, # shape (21,14,14)
}
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test that residue_constants generates correct values."""
from absl.testing import absltest
from absl.testing import parameterized
import numpy as np
from alphafold.common import residue_constants
class ResidueConstantsTest(parameterized.TestCase):
@parameterized.parameters(
('ALA', 0),
('CYS', 1),
('HIS', 2),
('MET', 3),
('LYS', 4),
('ARG', 4),
)
def testChiAnglesAtoms(self, residue_name, chi_num):
chi_angles_atoms = residue_constants.chi_angles_atoms[residue_name]
self.assertLen(chi_angles_atoms, chi_num)
for chi_angle_atoms in chi_angles_atoms:
self.assertLen(chi_angle_atoms, 4)
def testChiGroupsForAtom(self):
for k, chi_groups in residue_constants.chi_groups_for_atom.items():
res_name, atom_name = k
for chi_group_i, atom_i in chi_groups:
self.assertEqual(
atom_name,
residue_constants.chi_angles_atoms[res_name][chi_group_i][atom_i])
@parameterized.parameters(
('ALA', 5), ('ARG', 11), ('ASN', 8), ('ASP', 8), ('CYS', 6), ('GLN', 9),
('GLU', 9), ('GLY', 4), ('HIS', 10), ('ILE', 8), ('LEU', 8), ('LYS', 9),
('MET', 8), ('PHE', 11), ('PRO', 7), ('SER', 6), ('THR', 7), ('TRP', 14),
('TYR', 12), ('VAL', 7)
)
def testResidueAtoms(self, atom_name, num_residue_atoms):
residue_atoms = residue_constants.residue_atoms[atom_name]
self.assertLen(residue_atoms, num_residue_atoms)
def testStandardAtomMask(self):
with self.subTest('Check shape'):
self.assertEqual(residue_constants.STANDARD_ATOM_MASK.shape, (21, 37,))
with self.subTest('Check values'):
str_to_row = lambda s: [c == '1' for c in s] # More clear/concise.
np.testing.assert_array_equal(
residue_constants.STANDARD_ATOM_MASK,
np.array([
# NB This was defined by c+p but looks sane.
str_to_row('11111 '), # ALA
str_to_row('111111 1 1 11 1 '), # ARG
str_to_row('111111 11 '), # ASP
str_to_row('111111 11 '), # ASN
str_to_row('11111 1 '), # CYS
str_to_row('111111 1 11 '), # GLU
str_to_row('111111 1 11 '), # GLN
str_to_row('111 1 '), # GLY
str_to_row('111111 11 1 1 '), # HIS
str_to_row('11111 11 1 '), # ILE
str_to_row('111111 11 '), # LEU
str_to_row('111111 1 1 1 '), # LYS
str_to_row('111111 11 '), # MET
str_to_row('111111 11 11 1 '), # PHE
str_to_row('111111 1 '), # PRO
str_to_row('11111 1 '), # SER
str_to_row('11111 1 1 '), # THR
str_to_row('111111 11 11 1 1 11 '), # TRP
str_to_row('111111 11 11 11 '), # TYR
str_to_row('11111 11 '), # VAL
str_to_row(' '), # UNK
]))
with self.subTest('Check row totals'):
# Check each row has the right number of atoms.
for row, restype in enumerate(residue_constants.restypes): # A, R, ...
long_restype = residue_constants.restype_1to3[restype] # ALA, ARG, ...
atoms_names = residue_constants.residue_atoms[
long_restype] # ['C', 'CA', 'CB', 'N', 'O'], ...
self.assertLen(atoms_names,
residue_constants.STANDARD_ATOM_MASK[row, :].sum(),
long_restype)
def testAtomTypes(self):
self.assertEqual(residue_constants.atom_type_num, 37)
self.assertEqual(residue_constants.atom_types[0], 'N')
self.assertEqual(residue_constants.atom_types[1], 'CA')
self.assertEqual(residue_constants.atom_types[2], 'C')
self.assertEqual(residue_constants.atom_types[3], 'CB')
self.assertEqual(residue_constants.atom_types[4], 'O')
self.assertEqual(residue_constants.atom_order['N'], 0)
self.assertEqual(residue_constants.atom_order['CA'], 1)
self.assertEqual(residue_constants.atom_order['C'], 2)
self.assertEqual(residue_constants.atom_order['CB'], 3)
self.assertEqual(residue_constants.atom_order['O'], 4)
self.assertEqual(residue_constants.atom_type_num, 37)
def testRestypes(self):
three_letter_restypes = [
residue_constants.restype_1to3[r] for r in residue_constants.restypes]
for restype, exp_restype in zip(
three_letter_restypes, sorted(residue_constants.restype_1to3.values())):
self.assertEqual(restype, exp_restype)
self.assertEqual(residue_constants.restype_num, 20)
def testSequenceToOneHotHHBlits(self):
one_hot = residue_constants.sequence_to_onehot(
'ABCDEFGHIJKLMNOPQRSTUVWXYZ-', residue_constants.HHBLITS_AA_TO_ID)
exp_one_hot = np.array(
[[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])
np.testing.assert_array_equal(one_hot, exp_one_hot)
def testSequenceToOneHotStandard(self):
one_hot = residue_constants.sequence_to_onehot(
'ARNDCQEGHILKMFPSTWYV', residue_constants.restype_order)
np.testing.assert_array_equal(one_hot, np.eye(20))
def testSequenceToOneHotUnknownMapping(self):
seq = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
expected_out = np.zeros([26, 21])
for row, position in enumerate(
[0, 20, 4, 3, 6, 13, 7, 8, 9, 20, 11, 10, 12, 2, 20, 14, 5, 1, 15, 16,
20, 19, 17, 20, 18, 20]):
expected_out[row, position] = 1
aa_types = residue_constants.sequence_to_onehot(
sequence=seq,
mapping=residue_constants.restype_order_with_x,
map_unknown_to_x=True)
self.assertTrue((aa_types == expected_out).all())
@parameterized.named_parameters(
('lowercase', 'aaa'), # Insertions in A3M.
('gaps', '---'), # Gaps in A3M.
('dots', '...'), # Gaps in A3M.
('metadata', '>TEST'), # FASTA metadata line.
)
def testSequenceToOneHotUnknownMappingError(self, seq):
with self.assertRaises(ValueError):
residue_constants.sequence_to_onehot(
sequence=seq,
mapping=residue_constants.restype_order_with_x,
map_unknown_to_x=True)
if __name__ == '__main__':
absltest.main()
This source diff could not be displayed because it is too large. You can view the blob instead.
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Data pipeline for model features."""
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Parses the mmCIF file format."""
import collections
import io
from typing import Any, Mapping, Optional, Sequence, Tuple
from absl import logging
from Bio import PDB
from Bio.Data import SCOPData
import dataclasses
# Type aliases:
ChainId = str
PdbHeader = Mapping[str, Any]
PdbStructure = PDB.Structure.Structure
SeqRes = str
MmCIFDict = Mapping[str, Sequence[str]]
@dataclasses.dataclass(frozen=True)
class Monomer:
id: str
num: int
# Note - mmCIF format provides no guarantees on the type of author-assigned
# sequence numbers. They need not be integers.
@dataclasses.dataclass(frozen=True)
class AtomSite:
residue_name: str
author_chain_id: str
mmcif_chain_id: str
author_seq_num: str
mmcif_seq_num: int
insertion_code: str
hetatm_atom: str
model_num: int
# Used to map SEQRES index to a residue in the structure.
@dataclasses.dataclass(frozen=True)
class ResiduePosition:
chain_id: str
residue_number: int
insertion_code: str
@dataclasses.dataclass(frozen=True)
class ResidueAtPosition:
position: Optional[ResiduePosition]
name: str
is_missing: bool
hetflag: str
@dataclasses.dataclass(frozen=True)
class MmcifObject:
"""Representation of a parsed mmCIF file.
Contains:
file_id: A meaningful name, e.g. a pdb_id. Should be unique amongst all
files being processed.
header: Biopython header.
structure: Biopython structure.
chain_to_seqres: Dict mapping chain_id to 1 letter amino acid sequence. E.g.
{'A': 'ABCDEFG'}
seqres_to_structure: Dict; for each chain_id contains a mapping between
SEQRES index and a ResidueAtPosition. e.g. {'A': {0: ResidueAtPosition,
1: ResidueAtPosition,
...}}
raw_string: The raw string used to construct the MmcifObject.
"""
file_id: str
header: PdbHeader
structure: PdbStructure
chain_to_seqres: Mapping[ChainId, SeqRes]
seqres_to_structure: Mapping[ChainId, Mapping[int, ResidueAtPosition]]
raw_string: Any
@dataclasses.dataclass(frozen=True)
class ParsingResult:
"""Returned by the parse function.
Contains:
mmcif_object: A MmcifObject, may be None if no chain could be successfully
parsed.
errors: A dict mapping (file_id, chain_id) to any exception generated.
"""
mmcif_object: Optional[MmcifObject]
errors: Mapping[Tuple[str, str], Any]
class ParseError(Exception):
"""An error indicating that an mmCIF file could not be parsed."""
def mmcif_loop_to_list(prefix: str,
parsed_info: MmCIFDict) -> Sequence[Mapping[str, str]]:
"""Extracts loop associated with a prefix from mmCIF data as a list.
Reference for loop_ in mmCIF:
http://mmcif.wwpdb.org/docs/tutorials/mechanics/pdbx-mmcif-syntax.html
Args:
prefix: Prefix shared by each of the data items in the loop.
e.g. '_entity_poly_seq.', where the data items are _entity_poly_seq.num,
_entity_poly_seq.mon_id. Should include the trailing period.
parsed_info: A dict of parsed mmCIF data, e.g. _mmcif_dict from a Biopython
parser.
Returns:
Returns a list of dicts; each dict represents 1 entry from an mmCIF loop.
"""
cols = []
data = []
for key, value in parsed_info.items():
if key.startswith(prefix):
cols.append(key)
data.append(value)
assert all([len(xs) == len(data[0]) for xs in data]), (
'mmCIF error: Not all loops are the same length: %s' % cols)
return [dict(zip(cols, xs)) for xs in zip(*data)]
def mmcif_loop_to_dict(prefix: str,
index: str,
parsed_info: MmCIFDict,
) -> Mapping[str, Mapping[str, str]]:
"""Extracts loop associated with a prefix from mmCIF data as a dictionary.
Args:
prefix: Prefix shared by each of the data items in the loop.
e.g. '_entity_poly_seq.', where the data items are _entity_poly_seq.num,
_entity_poly_seq.mon_id. Should include the trailing period.
index: Which item of loop data should serve as the key.
parsed_info: A dict of parsed mmCIF data, e.g. _mmcif_dict from a Biopython
parser.
Returns:
Returns a dict of dicts; each dict represents 1 entry from an mmCIF loop,
indexed by the index column.
"""
entries = mmcif_loop_to_list(prefix, parsed_info)
return {entry[index]: entry for entry in entries}
def parse(*,
file_id: str,
mmcif_string: str,
catch_all_errors: bool = True) -> ParsingResult:
"""Entry point, parses an mmcif_string.
Args:
file_id: A string identifier for this file. Should be unique within the
collection of files being processed.
mmcif_string: Contents of an mmCIF file.
catch_all_errors: If True, all exceptions are caught and error messages are
returned as part of the ParsingResult. If False exceptions will be allowed
to propagate.
Returns:
A ParsingResult.
"""
errors = {}
try:
parser = PDB.MMCIFParser(QUIET=True)
handle = io.StringIO(mmcif_string)
full_structure = parser.get_structure('', handle)
first_model_structure = _get_first_model(full_structure)
# Extract the _mmcif_dict from the parser, which contains useful fields not
# reflected in the Biopython structure.
parsed_info = parser._mmcif_dict # pylint:disable=protected-access
# Ensure all values are lists, even if singletons.
for key, value in parsed_info.items():
if not isinstance(value, list):
parsed_info[key] = [value]
header = _get_header(parsed_info)
# Determine the protein chains, and their start numbers according to the
# internal mmCIF numbering scheme (likely but not guaranteed to be 1).
valid_chains = _get_protein_chains(parsed_info=parsed_info)
if not valid_chains:
return ParsingResult(
None, {(file_id, ''): 'No protein chains found in this file.'})
seq_start_num = {chain_id: min([monomer.num for monomer in seq])
for chain_id, seq in valid_chains.items()}
# Loop over the atoms for which we have coordinates. Populate two mappings:
# -mmcif_to_author_chain_id (maps internal mmCIF chain ids to chain ids used
# the authors / Biopython).
# -seq_to_structure_mappings (maps idx into sequence to ResidueAtPosition).
mmcif_to_author_chain_id = {}
seq_to_structure_mappings = {}
for atom in _get_atom_site_list(parsed_info):
if atom.model_num != '1':
# We only process the first model at the moment.
continue
mmcif_to_author_chain_id[atom.mmcif_chain_id] = atom.author_chain_id
if atom.mmcif_chain_id in valid_chains:
hetflag = ' '
if atom.hetatm_atom == 'HETATM':
# Water atoms are assigned a special hetflag of W in Biopython. We
# need to do the same, so that this hetflag can be used to fetch
# a residue from the Biopython structure by id.
if atom.residue_name in ('HOH', 'WAT'):
hetflag = 'W'
else:
hetflag = 'H_' + atom.residue_name
insertion_code = atom.insertion_code
if not _is_set(atom.insertion_code):
insertion_code = ' '
position = ResiduePosition(chain_id=atom.author_chain_id,
residue_number=int(atom.author_seq_num),
insertion_code=insertion_code)
seq_idx = int(atom.mmcif_seq_num) - seq_start_num[atom.mmcif_chain_id]
current = seq_to_structure_mappings.get(atom.author_chain_id, {})
current[seq_idx] = ResidueAtPosition(position=position,
name=atom.residue_name,
is_missing=False,
hetflag=hetflag)
seq_to_structure_mappings[atom.author_chain_id] = current
# Add missing residue information to seq_to_structure_mappings.
for chain_id, seq_info in valid_chains.items():
author_chain = mmcif_to_author_chain_id[chain_id]
current_mapping = seq_to_structure_mappings[author_chain]
for idx, monomer in enumerate(seq_info):
if idx not in current_mapping:
current_mapping[idx] = ResidueAtPosition(position=None,
name=monomer.id,
is_missing=True,
hetflag=' ')
author_chain_to_sequence = {}
for chain_id, seq_info in valid_chains.items():
author_chain = mmcif_to_author_chain_id[chain_id]
seq = []
for monomer in seq_info:
code = SCOPData.protein_letters_3to1.get(monomer.id, 'X')
seq.append(code if len(code) == 1 else 'X')
seq = ''.join(seq)
author_chain_to_sequence[author_chain] = seq
mmcif_object = MmcifObject(
file_id=file_id,
header=header,
structure=first_model_structure,
chain_to_seqres=author_chain_to_sequence,
seqres_to_structure=seq_to_structure_mappings,
raw_string=parsed_info)
return ParsingResult(mmcif_object=mmcif_object, errors=errors)
except Exception as e: # pylint:disable=broad-except
errors[(file_id, '')] = e
if not catch_all_errors:
raise
return ParsingResult(mmcif_object=None, errors=errors)
def _get_first_model(structure: PdbStructure) -> PdbStructure:
"""Returns the first model in a Biopython structure."""
return next(structure.get_models())
_MIN_LENGTH_OF_CHAIN_TO_BE_COUNTED_AS_PEPTIDE = 21
def get_release_date(parsed_info: MmCIFDict) -> str:
"""Returns the oldest revision date."""
revision_dates = parsed_info['_pdbx_audit_revision_history.revision_date']
return min(revision_dates)
def _get_header(parsed_info: MmCIFDict) -> PdbHeader:
"""Returns a basic header containing method, release date and resolution."""
header = {}
experiments = mmcif_loop_to_list('_exptl.', parsed_info)
header['structure_method'] = ','.join([
experiment['_exptl.method'].lower() for experiment in experiments])
# Note: The release_date here corresponds to the oldest revision. We prefer to
# use this for dataset filtering over the deposition_date.
if '_pdbx_audit_revision_history.revision_date' in parsed_info:
header['release_date'] = get_release_date(parsed_info)
else:
logging.warning('Could not determine release_date: %s',
parsed_info['_entry.id'])
header['resolution'] = 0.00
for res_key in ('_refine.ls_d_res_high', '_em_3d_reconstruction.resolution',
'_reflns.d_resolution_high'):
if res_key in parsed_info:
try:
raw_resolution = parsed_info[res_key][0]
header['resolution'] = float(raw_resolution)
except ValueError:
logging.warning('Invalid resolution format: %s', parsed_info[res_key])
return header
def _get_atom_site_list(parsed_info: MmCIFDict) -> Sequence[AtomSite]:
"""Returns list of atom sites; contains data not present in the structure."""
return [AtomSite(*site) for site in zip( # pylint:disable=g-complex-comprehension
parsed_info['_atom_site.label_comp_id'],
parsed_info['_atom_site.auth_asym_id'],
parsed_info['_atom_site.label_asym_id'],
parsed_info['_atom_site.auth_seq_id'],
parsed_info['_atom_site.label_seq_id'],
parsed_info['_atom_site.pdbx_PDB_ins_code'],
parsed_info['_atom_site.group_PDB'],
parsed_info['_atom_site.pdbx_PDB_model_num'],
)]
def _get_protein_chains(
*, parsed_info: Mapping[str, Any]) -> Mapping[ChainId, Sequence[Monomer]]:
"""Extracts polymer information for protein chains only.
Args:
parsed_info: _mmcif_dict produced by the Biopython parser.
Returns:
A dict mapping mmcif chain id to a list of Monomers.
"""
# Get polymer information for each entity in the structure.
entity_poly_seqs = mmcif_loop_to_list('_entity_poly_seq.', parsed_info)
polymers = collections.defaultdict(list)
for entity_poly_seq in entity_poly_seqs:
polymers[entity_poly_seq['_entity_poly_seq.entity_id']].append(
Monomer(id=entity_poly_seq['_entity_poly_seq.mon_id'],
num=int(entity_poly_seq['_entity_poly_seq.num'])))
# Get chemical compositions. Will allow us to identify which of these polymers
# are proteins.
chem_comps = mmcif_loop_to_dict('_chem_comp.', '_chem_comp.id', parsed_info)
# Get chains information for each entity. Necessary so that we can return a
# dict keyed on chain id rather than entity.
struct_asyms = mmcif_loop_to_list('_struct_asym.', parsed_info)
entity_to_mmcif_chains = collections.defaultdict(list)
for struct_asym in struct_asyms:
chain_id = struct_asym['_struct_asym.id']
entity_id = struct_asym['_struct_asym.entity_id']
entity_to_mmcif_chains[entity_id].append(chain_id)
# Identify and return the valid protein chains.
valid_chains = {}
for entity_id, seq_info in polymers.items():
chain_ids = entity_to_mmcif_chains[entity_id]
# Reject polymers without any peptide-like components, such as DNA/RNA.
if any(['peptide' in chem_comps[monomer.id]['_chem_comp.type']
for monomer in seq_info]):
for chain_id in chain_ids:
valid_chains[chain_id] = seq_info
return valid_chains
def _is_set(data: str) -> bool:
"""Returns False if data is a special mmCIF character indicating 'unset'."""
return data not in ('.', '?')
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Functions for parsing various file formats."""
import collections
import re
import string
from typing import Iterable, List, Optional, Sequence, Tuple
import dataclasses
DeletionMatrix = Sequence[Sequence[int]]
@dataclasses.dataclass(frozen=True)
class HhrHit:
"""Class representing a hit in an hhr file."""
index: int
name: str
prob_true: float
e_value: float
score: float
aligned_cols: int
identity: float
similarity: float
sum_probs: float
neff: float
query: str
hit_sequence: str
hit_dssp: str
column_score_code: str
confidence_scores: str
indices_query: List[int]
indices_hit: List[int]
def parse_fasta(fasta_string: str) -> Tuple[Sequence[str], Sequence[str]]:
"""Parses FASTA string and returns list of strings with amino-acid sequences.
Arguments:
fasta_string: The string contents of a FASTA file.
Returns:
A tuple of two lists:
* A list of sequences.
* A list of sequence descriptions taken from the comment lines. In the
same order as the sequences.
"""
sequences = []
descriptions = []
index = -1
for line in fasta_string.splitlines():
line = line.strip()
if line.startswith('>'):
index += 1
descriptions.append(line[1:]) # Remove the '>' at the beginning.
sequences.append('')
continue
elif not line:
continue # Skip blank lines.
sequences[index] += line
return sequences, descriptions
def parse_stockholm(
stockholm_string: str) -> Tuple[Sequence[str], DeletionMatrix]:
"""Parses sequences and deletion matrix from stockholm format alignment.
Args:
stockholm_string: The string contents of a stockholm file. The first
sequence in the file should be the query sequence.
Returns:
A tuple of:
* A list of sequences that have been aligned to the query. These
might contain duplicates.
* The deletion matrix for the alignment as a list of lists. The element
at `deletion_matrix[i][j]` is the number of residues deleted from
the aligned sequence i at residue position j.
"""
name_to_sequence = collections.OrderedDict()
for line in stockholm_string.splitlines():
line = line.strip()
if not line or line.startswith(('#', '//')):
continue
name, sequence = line.split()
if name not in name_to_sequence:
name_to_sequence[name] = ''
name_to_sequence[name] += sequence
msa = []
deletion_matrix = []
query = ''
keep_columns = []
for seq_index, sequence in enumerate(name_to_sequence.values()):
if seq_index == 0:
# Gather the columns with gaps from the query
query = sequence
keep_columns = [i for i, res in enumerate(query) if res != '-']
# Remove the columns with gaps in the query from all sequences.
aligned_sequence = ''.join([sequence[c] for c in keep_columns])
msa.append(aligned_sequence)
# Count the number of deletions w.r.t. query.
deletion_vec = []
deletion_count = 0
for seq_res, query_res in zip(sequence, query):
if seq_res != '-' or query_res != '-':
if query_res == '-':
deletion_count += 1
else:
deletion_vec.append(deletion_count)
deletion_count = 0
deletion_matrix.append(deletion_vec)
return msa, deletion_matrix
def parse_a3m(a3m_string: str) -> Tuple[Sequence[str], DeletionMatrix]:
"""Parses sequences and deletion matrix from a3m format alignment.
Args:
a3m_string: The string contents of a a3m file. The first sequence in the
file should be the query sequence.
Returns:
A tuple of:
* A list of sequences that have been aligned to the query. These
might contain duplicates.
* The deletion matrix for the alignment as a list of lists. The element
at `deletion_matrix[i][j]` is the number of residues deleted from
the aligned sequence i at residue position j.
"""
sequences, _ = parse_fasta(a3m_string)
deletion_matrix = []
for msa_sequence in sequences:
deletion_vec = []
deletion_count = 0
for j in msa_sequence:
if j.islower():
deletion_count += 1
else:
deletion_vec.append(deletion_count)
deletion_count = 0
deletion_matrix.append(deletion_vec)
# Make the MSA matrix out of aligned (deletion-free) sequences.
deletion_table = str.maketrans('', '', string.ascii_lowercase)
aligned_sequences = [s.translate(deletion_table) for s in sequences]
return aligned_sequences, deletion_matrix
def _convert_sto_seq_to_a3m(
query_non_gaps: Sequence[bool], sto_seq: str) -> Iterable[str]:
for is_query_res_non_gap, sequence_res in zip(query_non_gaps, sto_seq):
if is_query_res_non_gap:
yield sequence_res
elif sequence_res != '-':
yield sequence_res.lower()
def convert_stockholm_to_a3m(stockholm_format: str,
max_sequences: Optional[int] = None) -> str:
"""Converts MSA in Stockholm format to the A3M format."""
descriptions = {}
sequences = {}
reached_max_sequences = False
for line in stockholm_format.splitlines():
reached_max_sequences = max_sequences and len(sequences) >= max_sequences
if line.strip() and not line.startswith(('#', '//')):
# Ignore blank lines, markup and end symbols - remainder are alignment
# sequence parts.
seqname, aligned_seq = line.split(maxsplit=1)
if seqname not in sequences:
if reached_max_sequences:
continue
sequences[seqname] = ''
sequences[seqname] += aligned_seq
for line in stockholm_format.splitlines():
if line[:4] == '#=GS':
# Description row - example format is:
# #=GS UniRef90_Q9H5Z4/4-78 DE [subseq from] cDNA: FLJ22755 ...
columns = line.split(maxsplit=3)
seqname, feature = columns[1:3]
value = columns[3] if len(columns) == 4 else ''
if feature != 'DE':
continue
if reached_max_sequences and seqname not in sequences:
continue
descriptions[seqname] = value
if len(descriptions) == len(sequences):
break
# Convert sto format to a3m line by line
a3m_sequences = {}
# query_sequence is assumed to be the first sequence
query_sequence = next(iter(sequences.values()))
query_non_gaps = [res != '-' for res in query_sequence]
for seqname, sto_sequence in sequences.items():
a3m_sequences[seqname] = ''.join(
_convert_sto_seq_to_a3m(query_non_gaps, sto_sequence))
fasta_chunks = (f">{k} {descriptions.get(k, '')}\n{a3m_sequences[k]}"
for k in a3m_sequences)
return '\n'.join(fasta_chunks) + '\n' # Include terminating newline.
def _get_hhr_line_regex_groups(
regex_pattern: str, line: str) -> Sequence[Optional[str]]:
match = re.match(regex_pattern, line)
if match is None:
raise RuntimeError(f'Could not parse query line {line}')
return match.groups()
def _update_hhr_residue_indices_list(
sequence: str, start_index: int, indices_list: List[int]):
"""Computes the relative indices for each residue with respect to the original sequence."""
counter = start_index
for symbol in sequence:
if symbol == '-':
indices_list.append(-1)
else:
indices_list.append(counter)
counter += 1
def _parse_hhr_hit(detailed_lines: Sequence[str]) -> HhrHit:
"""Parses the detailed HMM HMM comparison section for a single Hit.
This works on .hhr files generated from both HHBlits and HHSearch.
Args:
detailed_lines: A list of lines from a single comparison section between 2
sequences (which each have their own HMM's)
Returns:
A dictionary with the information from that detailed comparison section
Raises:
RuntimeError: If a certain line cannot be processed
"""
# Parse first 2 lines.
number_of_hit = int(detailed_lines[0].split()[-1])
name_hit = detailed_lines[1][1:]
# Parse the summary line.
pattern = (
'Probab=(.*)[\t ]*E-value=(.*)[\t ]*Score=(.*)[\t ]*Aligned_cols=(.*)[\t'
' ]*Identities=(.*)%[\t ]*Similarity=(.*)[\t ]*Sum_probs=(.*)[\t '
']*Template_Neff=(.*)')
match = re.match(pattern, detailed_lines[2])
if match is None:
raise RuntimeError(
'Could not parse section: %s. Expected this: \n%s to contain summary.' %
(detailed_lines, detailed_lines[2]))
(prob_true, e_value, score, aligned_cols, identity, similarity, sum_probs,
neff) = [float(x) for x in match.groups()]
# The next section reads the detailed comparisons. These are in a 'human
# readable' format which has a fixed length. The strategy employed is to
# assume that each block starts with the query sequence line, and to parse
# that with a regexp in order to deduce the fixed length used for that block.
query = ''
hit_sequence = ''
hit_dssp = ''
column_score_code = ''
confidence_scores = ''
indices_query = []
indices_hit = []
length_block = None
for line in detailed_lines[3:]:
# Parse the query sequence line
if (line.startswith('Q ') and not line.startswith('Q ss_dssp') and
not line.startswith('Q ss_pred') and
not line.startswith('Q Consensus')):
# Thus the first 17 characters must be 'Q <query_name> ', and we can parse
# everything after that.
# start sequence end total_sequence_length
patt = r'[\t ]*([0-9]*) ([A-Z-]*)[\t ]*([0-9]*) \([0-9]*\)'
groups = _get_hhr_line_regex_groups(patt, line[17:])
# Get the length of the parsed block using the start and finish indices,
# and ensure it is the same as the actual block length.
start = int(groups[0]) - 1 # Make index zero based.
delta_query = groups[1]
end = int(groups[2])
num_insertions = len([x for x in delta_query if x == '-'])
length_block = end - start + num_insertions
assert length_block == len(delta_query)
# Update the query sequence and indices list.
query += delta_query
_update_hhr_residue_indices_list(delta_query, start, indices_query)
elif line.startswith('T '):
# Parse the hit dssp line.
if line.startswith('T ss_dssp'):
# T ss_dssp hit_dssp
patt = r'T ss_dssp[\t ]*([A-Z-]*)'
groups = _get_hhr_line_regex_groups(patt, line)
assert len(groups[0]) == length_block
hit_dssp += groups[0]
# Parse the hit sequence.
elif (not line.startswith('T ss_pred') and
not line.startswith('T Consensus')):
# Thus the first 17 characters must be 'T <hit_name> ', and we can
# parse everything after that.
# start sequence end total_sequence_length
patt = r'[\t ]*([0-9]*) ([A-Z-]*)[\t ]*[0-9]* \([0-9]*\)'
groups = _get_hhr_line_regex_groups(patt, line[17:])
start = int(groups[0]) - 1 # Make index zero based.
delta_hit_sequence = groups[1]
assert length_block == len(delta_hit_sequence)
# Update the hit sequence and indices list.
hit_sequence += delta_hit_sequence
_update_hhr_residue_indices_list(delta_hit_sequence, start, indices_hit)
# Parse the column score line.
elif line.startswith(' ' * 22):
assert length_block
column_score_code += line[22:length_block + 22]
# Update confidence score.
elif line.startswith('Confidence'):
assert length_block
confidence_scores += line[22:length_block + 22]
return HhrHit(
index=number_of_hit,
name=name_hit,
prob_true=prob_true,
e_value=e_value,
score=score,
aligned_cols=int(aligned_cols),
identity=identity,
similarity=similarity,
sum_probs=sum_probs,
neff=neff,
query=query,
hit_sequence=hit_sequence,
hit_dssp=hit_dssp,
column_score_code=column_score_code,
confidence_scores=confidence_scores,
indices_query=indices_query,
indices_hit=indices_hit,
)
def parse_hhr(hhr_string: str) -> Sequence[HhrHit]:
"""Parses the content of an entire HHR file."""
lines = hhr_string.splitlines()
# Each .hhr file starts with a results table, then has a sequence of hit
# "paragraphs", each paragraph starting with a line 'No <hit number>'. We
# iterate through each paragraph to parse each hit.
block_starts = [i for i, line in enumerate(lines) if line.startswith('No ')]
hits = []
if block_starts:
block_starts.append(len(lines)) # Add the end of the final block.
for i in range(len(block_starts) - 1):
hits.append(_parse_hhr_hit(lines[block_starts[i]:block_starts[i + 1]]))
return hits
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Functions for building the input features for the AlphaFold model."""
import os
from typing import Mapping, Sequence
import numpy as np
# Internal import (7716).
from alphafold.common import residue_constants
from alphafold.data import parsers
from alphafold.data import templates
from alphafold.data.tools import hhblits
from alphafold.data.tools import hhsearch
from alphafold.data.tools import jackhmmer
FeatureDict = Mapping[str, np.ndarray]
def make_sequence_features(
sequence: str, description: str, num_res: int) -> FeatureDict:
"""Constructs a feature dict of sequence features."""
features = {}
features['aatype'] = residue_constants.sequence_to_onehot(
sequence=sequence,
mapping=residue_constants.restype_order_with_x,
map_unknown_to_x=True)
features['between_segment_residues'] = np.zeros((num_res,), dtype=np.int32)
features['domain_name'] = np.array([description.encode('utf-8')],
dtype=np.object_)
features['residue_index'] = np.array(range(num_res), dtype=np.int32)
features['seq_length'] = np.array([num_res] * num_res, dtype=np.int32)
features['sequence'] = np.array([sequence.encode('utf-8')], dtype=np.object_)
return features
def make_msa_features(
msas: Sequence[Sequence[str]],
deletion_matrices: Sequence[parsers.DeletionMatrix]) -> FeatureDict:
"""Constructs a feature dict of MSA features."""
if not msas:
raise ValueError('At least one MSA must be provided.')
int_msa = []
deletion_matrix = []
seen_sequences = set()
for msa_index, msa in enumerate(msas):
if not msa:
raise ValueError(f'MSA {msa_index} must contain at least one sequence.')
for sequence_index, sequence in enumerate(msa):
if sequence in seen_sequences:
continue
seen_sequences.add(sequence)
int_msa.append(
[residue_constants.HHBLITS_AA_TO_ID[res] for res in sequence])
deletion_matrix.append(deletion_matrices[msa_index][sequence_index])
num_res = len(msas[0][0])
num_alignments = len(int_msa)
features = {}
features['deletion_matrix_int'] = np.array(deletion_matrix, dtype=np.int32)
features['msa'] = np.array(int_msa, dtype=np.int32)
features['num_alignments'] = np.array(
[num_alignments] * num_res, dtype=np.int32)
return features
class DataPipeline:
"""Runs the alignment tools and assembles the input features."""
def __init__(self,
jackhmmer_binary_path: str,
hhblits_binary_path: str,
hhsearch_binary_path: str,
uniref90_database_path: str,
mgnify_database_path: str,
bfd_database_path: str,
uniclust30_database_path: str,
pdb70_database_path: str,
template_featurizer: templates.TemplateHitFeaturizer,
mgnify_max_hits: int = 501,
uniref_max_hits: int = 10000):
"""Constructs a feature dict for a given FASTA file."""
self.jackhmmer_uniref90_runner = jackhmmer.Jackhmmer(
binary_path=jackhmmer_binary_path,
database_path=uniref90_database_path)
self.hhblits_bfd_uniclust_runner = hhblits.HHBlits(
binary_path=hhblits_binary_path,
databases=[bfd_database_path, uniclust30_database_path])
self.jackhmmer_mgnify_runner = jackhmmer.Jackhmmer(
binary_path=jackhmmer_binary_path,
database_path=mgnify_database_path)
self.hhsearch_pdb70_runner = hhsearch.HHSearch(
binary_path=hhsearch_binary_path,
databases=[pdb70_database_path])
self.template_featurizer = template_featurizer
self.mgnify_max_hits = mgnify_max_hits
self.uniref_max_hits = uniref_max_hits
def process(self, input_fasta_path: str, msa_output_dir: str) -> FeatureDict:
"""Runs alignment tools on the input sequence and creates features."""
with open(input_fasta_path) as f:
input_fasta_str = f.read()
input_seqs, input_descs = parsers.parse_fasta(input_fasta_str)
if len(input_seqs) != 1:
raise ValueError(
f'More than one input sequence found in {input_fasta_path}.')
input_sequence = input_seqs[0]
input_description = input_descs[0]
num_res = len(input_sequence)
jackhmmer_uniref90_result = self.jackhmmer_uniref90_runner.query(
input_fasta_path)
jackhmmer_mgnify_result = self.jackhmmer_mgnify_runner.query(
input_fasta_path)
uniref90_msa_as_a3m = parsers.convert_stockholm_to_a3m(
jackhmmer_uniref90_result['sto'], max_sequences=self.uniref_max_hits)
hhsearch_result = self.hhsearch_pdb70_runner.query(uniref90_msa_as_a3m)
uniref90_out_path = os.path.join(msa_output_dir, 'uniref90_hits.sto')
with open(uniref90_out_path, 'w') as f:
f.write(jackhmmer_uniref90_result['sto'])
mgnify_out_path = os.path.join(msa_output_dir, 'mgnify_hits.sto')
with open(mgnify_out_path, 'w') as f:
f.write(jackhmmer_mgnify_result['sto'])
uniref90_msa, uniref90_deletion_matrix = parsers.parse_stockholm(
jackhmmer_uniref90_result['sto'])
mgnify_msa, mgnify_deletion_matrix = parsers.parse_stockholm(
jackhmmer_mgnify_result['sto'])
hhsearch_hits = parsers.parse_hhr(hhsearch_result)
mgnify_msa = mgnify_msa[:self.mgnify_max_hits]
mgnify_deletion_matrix = mgnify_deletion_matrix[:self.mgnify_max_hits]
hhblits_bfd_uniclust_result = self.hhblits_bfd_uniclust_runner.query(
input_fasta_path)
bfd_out_path = os.path.join(msa_output_dir, 'bfd_uniclust_hits.a3m')
with open(bfd_out_path, 'w') as f:
f.write(hhblits_bfd_uniclust_result['a3m'])
bfd_msa, bfd_deletion_matrix = parsers.parse_a3m(
hhblits_bfd_uniclust_result['a3m'])
templates_result = self.template_featurizer.get_templates(
query_sequence=input_sequence,
query_pdb_code=None,
query_release_date=None,
hhr_hits=hhsearch_hits)
sequence_features = make_sequence_features(
sequence=input_sequence,
description=input_description,
num_res=num_res)
msa_features = make_msa_features(
msas=(uniref90_msa, bfd_msa, mgnify_msa),
deletion_matrices=(uniref90_deletion_matrix,
bfd_deletion_matrix,
mgnify_deletion_matrix))
return {**sequence_features, **msa_features, **templates_result.features}
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Functions for getting templates and calculating template features."""
import datetime
import glob
import os
import re
from typing import Any, Dict, Mapping, Optional, Sequence, Tuple
from absl import logging
import dataclasses
import numpy as np
# Internal import (7716).
from alphafold.common import residue_constants
from alphafold.data import mmcif_parsing
from alphafold.data import parsers
from alphafold.data.tools import kalign
class Error(Exception):
"""Base class for exceptions."""
class NoChainsError(Error):
"""An error indicating that template mmCIF didn't have any chains."""
class SequenceNotInTemplateError(Error):
"""An error indicating that template mmCIF didn't contain the sequence."""
class NoAtomDataInTemplateError(Error):
"""An error indicating that template mmCIF didn't contain atom positions."""
class TemplateAtomMaskAllZerosError(Error):
"""An error indicating that template mmCIF had all atom positions masked."""
class QueryToTemplateAlignError(Error):
"""An error indicating that the query can't be aligned to the template."""
class CaDistanceError(Error):
"""An error indicating that a CA atom distance exceeds a threshold."""
class MultipleChainsError(Error):
"""An error indicating that multiple chains were found for a given ID."""
# Prefilter exceptions.
class PrefilterError(Exception):
"""A base class for template prefilter exceptions."""
class DateError(PrefilterError):
"""An error indicating that the hit date was after the max allowed date."""
class PdbIdError(PrefilterError):
"""An error indicating that the hit PDB ID was identical to the query."""
class AlignRatioError(PrefilterError):
"""An error indicating that the hit align ratio to the query was too small."""
class DuplicateError(PrefilterError):
"""An error indicating that the hit was an exact subsequence of the query."""
class LengthError(PrefilterError):
"""An error indicating that the hit was too short."""
TEMPLATE_FEATURES = {
'template_aatype': np.float32,
'template_all_atom_masks': np.float32,
'template_all_atom_positions': np.float32,
'template_domain_names': np.object,
'template_e_value': np.float32,
'template_neff': np.float32,
'template_prob_true': np.float32,
'template_release_date': np.object,
'template_score': np.float32,
'template_similarity': np.float32,
'template_sequence': np.object,
'template_sum_probs': np.float32,
'template_confidence_scores': np.int64
}
def _get_pdb_id_and_chain(hit: parsers.HhrHit) -> Tuple[str, str]:
"""Returns PDB id and chain id for an HHSearch Hit."""
# PDB ID: 4 letters. Chain ID: 1+ alphanumeric letters or "." if unknown.
id_match = re.match(r'[a-zA-Z\d]{4}_[a-zA-Z0-9.]+', hit.name)
if not id_match:
raise ValueError(f'hit.name did not start with PDBID_chain: {hit.name}')
pdb_id, chain_id = id_match.group(0).split('_')
return pdb_id.lower(), chain_id
def _is_after_cutoff(
pdb_id: str,
release_dates: Mapping[str, datetime.datetime],
release_date_cutoff: Optional[datetime.datetime]) -> bool:
"""Checks if the template date is after the release date cutoff.
Args:
pdb_id: 4 letter pdb code.
release_dates: Dictionary mapping PDB ids to their structure release dates.
release_date_cutoff: Max release date that is valid for this query.
Returns:
True if the template release date is after the cutoff, False otherwise.
"""
if release_date_cutoff is None:
raise ValueError('The release_date_cutoff must not be None.')
if pdb_id in release_dates:
return release_dates[pdb_id] > release_date_cutoff
else:
# Since this is just a quick prefilter to reduce the number of mmCIF files
# we need to parse, we don't have to worry about returning True here.
logging.warning('Template structure not in release dates dict: %s', pdb_id)
return False
def _parse_obsolete(obsolete_file_path: str) -> Mapping[str, str]:
"""Parses the data file from PDB that lists which PDB ids are obsolete."""
with open(obsolete_file_path) as f:
result = {}
for line in f:
line = line.strip()
# We skip obsolete entries that don't contain a mapping to a new entry.
if line.startswith('OBSLTE') and len(line) > 30:
# Format: Date From To
# 'OBSLTE 31-JUL-94 116L 216L'
from_id = line[20:24].lower()
to_id = line[29:33].lower()
result[from_id] = to_id
return result
def _parse_release_dates(path: str) -> Mapping[str, datetime.datetime]:
"""Parses release dates file, returns a mapping from PDBs to release dates."""
if path.endswith('txt'):
release_dates = {}
with open(path, 'r') as f:
for line in f:
pdb_id, date = line.split(':')
date = date.strip()
# Python 3.6 doesn't have datetime.date.fromisoformat() which is about
# 90x faster than strptime. However, splitting the string manually is
# about 10x faster than strptime.
release_dates[pdb_id.strip()] = datetime.datetime(
year=int(date[:4]), month=int(date[5:7]), day=int(date[8:10]))
return release_dates
else:
raise ValueError('Invalid format of the release date file %s.' % path)
def _assess_hhsearch_hit(
hit: parsers.HhrHit,
hit_pdb_code: str,
query_sequence: str,
query_pdb_code: Optional[str],
release_dates: Mapping[str, datetime.datetime],
release_date_cutoff: datetime.datetime,
max_subsequence_ratio: float = 0.95,
min_align_ratio: float = 0.1) -> bool:
"""Determines if template is valid (without parsing the template mmcif file).
Args:
hit: HhrHit for the template.
hit_pdb_code: The 4 letter pdb code of the template hit. This might be
different from the value in the actual hit since the original pdb might
have become obsolete.
query_sequence: Amino acid sequence of the query.
query_pdb_code: 4 letter pdb code of the query.
release_dates: Dictionary mapping pdb codes to their structure release
dates.
release_date_cutoff: Max release date that is valid for this query.
max_subsequence_ratio: Exclude any exact matches with this much overlap.
min_align_ratio: Minimum overlap between the template and query.
Returns:
True if the hit passed the prefilter. Raises an exception otherwise.
Raises:
DateError: If the hit date was after the max allowed date.
PdbIdError: If the hit PDB ID was identical to the query.
AlignRatioError: If the hit align ratio to the query was too small.
DuplicateError: If the hit was an exact subsequence of the query.
LengthError: If the hit was too short.
"""
aligned_cols = hit.aligned_cols
align_ratio = aligned_cols / len(query_sequence)
template_sequence = hit.hit_sequence.replace('-', '')
length_ratio = float(len(template_sequence)) / len(query_sequence)
# Check whether the template is a large subsequence or duplicate of original
# query. This can happen due to duplicate entries in the PDB database.
duplicate = (template_sequence in query_sequence and
length_ratio > max_subsequence_ratio)
if _is_after_cutoff(hit_pdb_code, release_dates, release_date_cutoff):
raise DateError(f'Date ({release_dates[hit_pdb_code]}) > max template date '
f'({release_date_cutoff}).')
if query_pdb_code is not None:
if query_pdb_code.lower() == hit_pdb_code.lower():
raise PdbIdError('PDB code identical to Query PDB code.')
if align_ratio <= min_align_ratio:
raise AlignRatioError('Proportion of residues aligned to query too small. '
f'Align ratio: {align_ratio}.')
if duplicate:
raise DuplicateError('Template is an exact subsequence of query with large '
f'coverage. Length ratio: {length_ratio}.')
if len(template_sequence) < 10:
raise LengthError(f'Template too short. Length: {len(template_sequence)}.')
return True
def _find_template_in_pdb(
template_chain_id: str,
template_sequence: str,
mmcif_object: mmcif_parsing.MmcifObject) -> Tuple[str, str, int]:
"""Tries to find the template chain in the given pdb file.
This method tries the three following things in order:
1. Tries if there is an exact match in both the chain ID and the sequence.
If yes, the chain sequence is returned. Otherwise:
2. Tries if there is an exact match only in the sequence.
If yes, the chain sequence is returned. Otherwise:
3. Tries if there is a fuzzy match (X = wildcard) in the sequence.
If yes, the chain sequence is returned.
If none of these succeed, a SequenceNotInTemplateError is thrown.
Args:
template_chain_id: The template chain ID.
template_sequence: The template chain sequence.
mmcif_object: The PDB object to search for the template in.
Returns:
A tuple with:
* The chain sequence that was found to match the template in the PDB object.
* The ID of the chain that is being returned.
* The offset where the template sequence starts in the chain sequence.
Raises:
SequenceNotInTemplateError: If no match is found after the steps described
above.
"""
# Try if there is an exact match in both the chain ID and the (sub)sequence.
pdb_id = mmcif_object.file_id
chain_sequence = mmcif_object.chain_to_seqres.get(template_chain_id)
if chain_sequence and (template_sequence in chain_sequence):
logging.info(
'Found an exact template match %s_%s.', pdb_id, template_chain_id)
mapping_offset = chain_sequence.find(template_sequence)
return chain_sequence, template_chain_id, mapping_offset
# Try if there is an exact match in the (sub)sequence only.
for chain_id, chain_sequence in mmcif_object.chain_to_seqres.items():
if chain_sequence and (template_sequence in chain_sequence):
logging.info('Found a sequence-only match %s_%s.', pdb_id, chain_id)
mapping_offset = chain_sequence.find(template_sequence)
return chain_sequence, chain_id, mapping_offset
# Return a chain sequence that fuzzy matches (X = wildcard) the template.
# Make parentheses unnamed groups (?:_) to avoid the 100 named groups limit.
regex = ['.' if aa == 'X' else '(?:%s|X)' % aa for aa in template_sequence]
regex = re.compile(''.join(regex))
for chain_id, chain_sequence in mmcif_object.chain_to_seqres.items():
match = re.search(regex, chain_sequence)
if match:
logging.info('Found a fuzzy sequence-only match %s_%s.', pdb_id, chain_id)
mapping_offset = match.start()
return chain_sequence, chain_id, mapping_offset
# No hits, raise an error.
raise SequenceNotInTemplateError(
'Could not find the template sequence in %s_%s. Template sequence: %s, '
'chain_to_seqres: %s' % (pdb_id, template_chain_id, template_sequence,
mmcif_object.chain_to_seqres))
def _realign_pdb_template_to_query(
old_template_sequence: str,
template_chain_id: str,
mmcif_object: mmcif_parsing.MmcifObject,
old_mapping: Mapping[int, int],
kalign_binary_path: str) -> Tuple[str, Mapping[int, int]]:
"""Aligns template from the mmcif_object to the query.
In case PDB70 contains a different version of the template sequence, we need
to perform a realignment to the actual sequence that is in the mmCIF file.
This method performs such realignment, but returns the new sequence and
mapping only if the sequence in the mmCIF file is 90% identical to the old
sequence.
Note that the old_template_sequence comes from the hit, and contains only that
part of the chain that matches with the query while the new_template_sequence
is the full chain.
Args:
old_template_sequence: The template sequence that was returned by the PDB
template search (typically done using HHSearch).
template_chain_id: The template chain id was returned by the PDB template
search (typically done using HHSearch). This is used to find the right
chain in the mmcif_object chain_to_seqres mapping.
mmcif_object: A mmcif_object which holds the actual template data.
old_mapping: A mapping from the query sequence to the template sequence.
This mapping will be used to compute the new mapping from the query
sequence to the actual mmcif_object template sequence by aligning the
old_template_sequence and the actual template sequence.
kalign_binary_path: The path to a kalign executable.
Returns:
A tuple (new_template_sequence, new_query_to_template_mapping) where:
* new_template_sequence is the actual template sequence that was found in
the mmcif_object.
* new_query_to_template_mapping is the new mapping from the query to the
actual template found in the mmcif_object.
Raises:
QueryToTemplateAlignError:
* If there was an error thrown by the alignment tool.
* Or if the actual template sequence differs by more than 10% from the
old_template_sequence.
"""
aligner = kalign.Kalign(binary_path=kalign_binary_path)
new_template_sequence = mmcif_object.chain_to_seqres.get(
template_chain_id, '')
# Sometimes the template chain id is unknown. But if there is only a single
# sequence within the mmcif_object, it is safe to assume it is that one.
if not new_template_sequence:
if len(mmcif_object.chain_to_seqres) == 1:
logging.info('Could not find %s in %s, but there is only 1 sequence, so '
'using that one.',
template_chain_id,
mmcif_object.file_id)
new_template_sequence = list(mmcif_object.chain_to_seqres.values())[0]
else:
raise QueryToTemplateAlignError(
f'Could not find chain {template_chain_id} in {mmcif_object.file_id}. '
'If there are no mmCIF parsing errors, it is possible it was not a '
'protein chain.')
try:
(old_aligned_template, new_aligned_template), _ = parsers.parse_a3m(
aligner.align([old_template_sequence, new_template_sequence]))
except Exception as e:
raise QueryToTemplateAlignError(
'Could not align old template %s to template %s (%s_%s). Error: %s' %
(old_template_sequence, new_template_sequence, mmcif_object.file_id,
template_chain_id, str(e)))
logging.info('Old aligned template: %s\nNew aligned template: %s',
old_aligned_template, new_aligned_template)
old_to_new_template_mapping = {}
old_template_index = -1
new_template_index = -1
num_same = 0
for old_template_aa, new_template_aa in zip(
old_aligned_template, new_aligned_template):
if old_template_aa != '-':
old_template_index += 1
if new_template_aa != '-':
new_template_index += 1
if old_template_aa != '-' and new_template_aa != '-':
old_to_new_template_mapping[old_template_index] = new_template_index
if old_template_aa == new_template_aa:
num_same += 1
# Require at least 90 % sequence identity wrt to the shorter of the sequences.
if float(num_same) / min(
len(old_template_sequence), len(new_template_sequence)) < 0.9:
raise QueryToTemplateAlignError(
'Insufficient similarity of the sequence in the database: %s to the '
'actual sequence in the mmCIF file %s_%s: %s. We require at least '
'90 %% similarity wrt to the shorter of the sequences. This is not a '
'problem unless you think this is a template that should be included.' %
(old_template_sequence, mmcif_object.file_id, template_chain_id,
new_template_sequence))
new_query_to_template_mapping = {}
for query_index, old_template_index in old_mapping.items():
new_query_to_template_mapping[query_index] = (
old_to_new_template_mapping.get(old_template_index, -1))
new_template_sequence = new_template_sequence.replace('-', '')
return new_template_sequence, new_query_to_template_mapping
def _check_residue_distances(all_positions: np.ndarray,
all_positions_mask: np.ndarray,
max_ca_ca_distance: float):
"""Checks if the distance between unmasked neighbor residues is ok."""
ca_position = residue_constants.atom_order['CA']
prev_is_unmasked = False
prev_calpha = None
for i, (coords, mask) in enumerate(zip(all_positions, all_positions_mask)):
this_is_unmasked = bool(mask[ca_position])
if this_is_unmasked:
this_calpha = coords[ca_position]
if prev_is_unmasked:
distance = np.linalg.norm(this_calpha - prev_calpha)
if distance > max_ca_ca_distance:
raise CaDistanceError(
'The distance between residues %d and %d is %f > limit %f.' % (
i, i + 1, distance, max_ca_ca_distance))
prev_calpha = this_calpha
prev_is_unmasked = this_is_unmasked
def _get_atom_positions(
mmcif_object: mmcif_parsing.MmcifObject,
auth_chain_id: str,
max_ca_ca_distance: float) -> Tuple[np.ndarray, np.ndarray]:
"""Gets atom positions and mask from a list of Biopython Residues."""
num_res = len(mmcif_object.chain_to_seqres[auth_chain_id])
relevant_chains = [c for c in mmcif_object.structure.get_chains()
if c.id == auth_chain_id]
if len(relevant_chains) != 1:
raise MultipleChainsError(
f'Expected exactly one chain in structure with id {auth_chain_id}.')
chain = relevant_chains[0]
all_positions = np.zeros([num_res, residue_constants.atom_type_num, 3])
all_positions_mask = np.zeros([num_res, residue_constants.atom_type_num],
dtype=np.int64)
for res_index in range(num_res):
pos = np.zeros([residue_constants.atom_type_num, 3], dtype=np.float32)
mask = np.zeros([residue_constants.atom_type_num], dtype=np.float32)
res_at_position = mmcif_object.seqres_to_structure[auth_chain_id][res_index]
if not res_at_position.is_missing:
res = chain[(res_at_position.hetflag,
res_at_position.position.residue_number,
res_at_position.position.insertion_code)]
for atom in res.get_atoms():
atom_name = atom.get_name()
x, y, z = atom.get_coord()
if atom_name in residue_constants.atom_order.keys():
pos[residue_constants.atom_order[atom_name]] = [x, y, z]
mask[residue_constants.atom_order[atom_name]] = 1.0
elif atom_name.upper() == 'SE' and res.get_resname() == 'MSE':
# Put the coordinates of the selenium atom in the sulphur column.
pos[residue_constants.atom_order['SD']] = [x, y, z]
mask[residue_constants.atom_order['SD']] = 1.0
all_positions[res_index] = pos
all_positions_mask[res_index] = mask
_check_residue_distances(
all_positions, all_positions_mask, max_ca_ca_distance)
return all_positions, all_positions_mask
def _extract_template_features(
mmcif_object: mmcif_parsing.MmcifObject,
pdb_id: str,
mapping: Mapping[int, int],
template_sequence: str,
query_sequence: str,
template_chain_id: str,
confidence_scores: str,
kalign_binary_path: str) -> Tuple[Dict[str, Any], Optional[str]]:
"""Parses atom positions in the target structure and aligns with the query.
Atoms for each residue in the template structure are indexed to coincide
with their corresponding residue in the query sequence, according to the
alignment mapping provided.
Note that we only extract at most 500 templates because of HHSearch settings.
We set missing/invalid confidence scores to the default value of -1.
Note: We now have 4 types of confidence scores:
1. Valid scores
2. Invalid scores of residues not in both the query sequence and template
sequence
3. Missing scores because we don't have the secondary structure, and HHAlign
doesn't produce the posterior probabilities in this case.
4. Missing scores because of a different template sequence in PDB70,
invalidating the previously computed confidence scores. (Though in theory
HHAlign can be run on these to recompute the correct confidence scores).
We handle invalid and missing scores by setting them to -1, but consider
adding masks for the different types.
Args:
mmcif_object: mmcif_parsing.MmcifObject representing the template.
pdb_id: PDB code for the template.
mapping: Dictionary mapping indices in the query sequence to indices in
the template sequence.
template_sequence: String describing the amino acid sequence for the
template protein.
query_sequence: String describing the amino acid sequence for the query
protein.
template_chain_id: String ID describing which chain in the structure proto
should be used.
confidence_scores: String containing per-residue confidence scores, where
each character represents the *TRUNCATED* posterior probability that the
corresponding template residue is correctly aligned with the query
residue, given the database match is correct (0 corresponds approximately
to 0-10%, 9 to 90-100%).
kalign_binary_path: The path to a kalign executable used for template
realignment.
Returns:
A tuple with:
* A dictionary containing the extra features derived from the template
protein structure.
* A warning message if the hit was realigned to the actual mmCIF sequence.
Otherwise None.
Raises:
NoChainsError: If the mmcif object doesn't contain any chains.
SequenceNotInTemplateError: If the given chain id / sequence can't
be found in the mmcif object.
QueryToTemplateAlignError: If the actual template in the mmCIF file
can't be aligned to the query.
NoAtomDataInTemplateError: If the mmcif object doesn't contain
atom positions.
TemplateAtomMaskAllZerosError: If the mmcif object doesn't have any
unmasked residues.
"""
if mmcif_object is None or not mmcif_object.chain_to_seqres:
raise NoChainsError('No chains in PDB: %s_%s' % (pdb_id, template_chain_id))
warning = None
try:
seqres, chain_id, mapping_offset = _find_template_in_pdb(
template_chain_id=template_chain_id,
template_sequence=template_sequence,
mmcif_object=mmcif_object)
except SequenceNotInTemplateError:
# If PDB70 contains a different version of the template, we use the sequence
# from the mmcif_object.
chain_id = template_chain_id
warning = (
f'The exact sequence {template_sequence} was not found in '
f'{pdb_id}_{chain_id}. Realigning the template to the actual sequence.')
logging.warning(warning)
# This throws an exception if it fails to realign the hit.
seqres, mapping = _realign_pdb_template_to_query(
old_template_sequence=template_sequence,
template_chain_id=template_chain_id,
mmcif_object=mmcif_object,
old_mapping=mapping,
kalign_binary_path=kalign_binary_path)
logging.info('Sequence in %s_%s: %s successfully realigned to %s',
pdb_id, chain_id, template_sequence, seqres)
# The template sequence changed.
template_sequence = seqres
# No mapping offset, the query is aligned to the actual sequence.
mapping_offset = 0
# Confidence scores were based on the previous sequence, so they are invalid
confidence_scores = None
try:
# Essentially set to infinity - we don't want to reject templates unless
# they're really really bad.
all_atom_positions, all_atom_mask = _get_atom_positions(
mmcif_object, chain_id, max_ca_ca_distance=150.0)
except (CaDistanceError, KeyError) as ex:
raise NoAtomDataInTemplateError(
'Could not get atom data (%s_%s): %s' % (pdb_id, chain_id, str(ex))
) from ex
all_atom_positions = np.split(all_atom_positions, all_atom_positions.shape[0])
all_atom_masks = np.split(all_atom_mask, all_atom_mask.shape[0])
output_templates_sequence = []
output_confidence_scores = []
templates_all_atom_positions = []
templates_all_atom_masks = []
for _ in query_sequence:
# Residues in the query_sequence that are not in the template_sequence:
templates_all_atom_positions.append(
np.zeros((residue_constants.atom_type_num, 3)))
templates_all_atom_masks.append(np.zeros(residue_constants.atom_type_num))
output_templates_sequence.append('-')
output_confidence_scores.append(-1)
for k, v in mapping.items():
template_index = v + mapping_offset
templates_all_atom_positions[k] = all_atom_positions[template_index][0]
templates_all_atom_masks[k] = all_atom_masks[template_index][0]
output_templates_sequence[k] = template_sequence[v]
if confidence_scores and confidence_scores[v] != ' ':
output_confidence_scores[k] = int(confidence_scores[v])
# Alanine (AA with the lowest number of atoms) has 5 atoms (C, CA, CB, N, O).
if np.sum(templates_all_atom_masks) < 5:
raise TemplateAtomMaskAllZerosError(
'Template all atom mask was all zeros: %s_%s. Residue range: %d-%d' %
(pdb_id, chain_id, min(mapping.values()) + mapping_offset,
max(mapping.values()) + mapping_offset))
output_templates_sequence = ''.join(output_templates_sequence)
templates_aatype = residue_constants.sequence_to_onehot(
output_templates_sequence, residue_constants.HHBLITS_AA_TO_ID)
return (
{'template_all_atom_positions': np.array(templates_all_atom_positions),
'template_all_atom_masks': np.array(templates_all_atom_masks),
'template_sequence': output_templates_sequence.encode(),
'template_aatype': np.array(templates_aatype),
'template_confidence_scores': np.array(output_confidence_scores),
'template_domain_names': f'{pdb_id.lower()}_{chain_id}'.encode(),
'template_release_date': mmcif_object.header['release_date'].encode()},
warning)
def _build_query_to_hit_index_mapping(
hit_query_sequence: str,
hit_sequence: str,
indices_hit: Sequence[int],
indices_query: Sequence[int],
original_query_sequence: str) -> Mapping[int, int]:
"""Gets mapping from indices in original query sequence to indices in the hit.
hit_query_sequence and hit_sequence are two aligned sequences containing gap
characters. hit_query_sequence contains only the part of the original query
sequence that matched the hit. When interpreting the indices from the .hhr, we
need to correct for this to recover a mapping from original query sequence to
the hit sequence.
Args:
hit_query_sequence: The portion of the query sequence that is in the .hhr
hit
hit_sequence: The portion of the hit sequence that is in the .hhr
indices_hit: The indices for each aminoacid relative to the hit sequence
indices_query: The indices for each aminoacid relative to the original query
sequence
original_query_sequence: String describing the original query sequence.
Returns:
Dictionary with indices in the original query sequence as keys and indices
in the hit sequence as values.
"""
# If the hit is empty (no aligned residues), return empty mapping
if not hit_query_sequence:
return {}
# Remove gaps and find the offset of hit.query relative to original query.
hhsearch_query_sequence = hit_query_sequence.replace('-', '')
hit_sequence = hit_sequence.replace('-', '')
hhsearch_query_offset = original_query_sequence.find(hhsearch_query_sequence)
# Index of -1 used for gap characters. Subtract the min index ignoring gaps.
min_idx = min(x for x in indices_hit if x > -1)
fixed_indices_hit = [
x - min_idx if x > -1 else -1 for x in indices_hit
]
min_idx = min(x for x in indices_query if x > -1)
fixed_indices_query = [x - min_idx if x > -1 else -1 for x in indices_query]
# Zip the corrected indices, ignore case where both seqs have gap characters.
mapping = {}
for q_i, q_t in zip(fixed_indices_query, fixed_indices_hit):
if q_t != -1 and q_i != -1:
if (q_t >= len(hit_sequence) or
q_i + hhsearch_query_offset >= len(original_query_sequence)):
continue
mapping[q_i + hhsearch_query_offset] = q_t
return mapping
@dataclasses.dataclass(frozen=True)
class SingleHitResult:
features: Optional[Mapping[str, Any]]
error: Optional[str]
warning: Optional[str]
def _process_single_hit(
query_sequence: str,
query_pdb_code: Optional[str],
hit: parsers.HhrHit,
mmcif_dir: str,
max_template_date: datetime.datetime,
release_dates: Mapping[str, datetime.datetime],
obsolete_pdbs: Mapping[str, str],
kalign_binary_path: str,
strict_error_check: bool = False) -> SingleHitResult:
"""Tries to extract template features from a single HHSearch hit."""
# Fail hard if we can't get the PDB ID and chain name from the hit.
hit_pdb_code, hit_chain_id = _get_pdb_id_and_chain(hit)
if hit_pdb_code not in release_dates:
if hit_pdb_code in obsolete_pdbs:
hit_pdb_code = obsolete_pdbs[hit_pdb_code]
# Pass hit_pdb_code since it might have changed due to the pdb being obsolete.
try:
_assess_hhsearch_hit(
hit=hit,
hit_pdb_code=hit_pdb_code,
query_sequence=query_sequence,
query_pdb_code=query_pdb_code,
release_dates=release_dates,
release_date_cutoff=max_template_date)
except PrefilterError as e:
msg = f'hit {hit_pdb_code}_{hit_chain_id} did not pass prefilter: {str(e)}'
logging.info('%s: %s', query_pdb_code, msg)
if strict_error_check and isinstance(
e, (DateError, PdbIdError, DuplicateError)):
# In strict mode we treat some prefilter cases as errors.
return SingleHitResult(features=None, error=msg, warning=None)
return SingleHitResult(features=None, error=None, warning=None)
mapping = _build_query_to_hit_index_mapping(
hit.query, hit.hit_sequence, hit.indices_hit, hit.indices_query,
query_sequence)
# The mapping is from the query to the actual hit sequence, so we need to
# remove gaps (which regardless have a missing confidence score).
template_sequence = hit.hit_sequence.replace('-', '')
confidence_scores = ''.join(
[cs for t, cs in zip(hit.hit_sequence, hit.confidence_scores)
if t != '-'])
cif_path = os.path.join(mmcif_dir, hit_pdb_code + '.cif')
logging.info('Reading PDB entry from %s. Query: %s, template: %s',
cif_path, query_sequence, template_sequence)
# Fail if we can't find the mmCIF file.
with open(cif_path, 'r') as cif_file:
cif_string = cif_file.read()
parsing_result = mmcif_parsing.parse(
file_id=hit_pdb_code, mmcif_string=cif_string)
if parsing_result.mmcif_object is not None:
hit_release_date = datetime.datetime.strptime(
parsing_result.mmcif_object.header['release_date'], '%Y-%m-%d')
if hit_release_date > max_template_date:
error = ('Template %s date (%s) > max template date (%s).' %
(hit_pdb_code, hit_release_date, max_template_date))
if strict_error_check:
return SingleHitResult(features=None, error=error, warning=None)
else:
logging.warning(error)
return SingleHitResult(features=None, error=None, warning=None)
try:
features, realign_warning = _extract_template_features(
mmcif_object=parsing_result.mmcif_object,
pdb_id=hit_pdb_code,
mapping=mapping,
template_sequence=template_sequence,
query_sequence=query_sequence,
template_chain_id=hit_chain_id,
confidence_scores=confidence_scores,
kalign_binary_path=kalign_binary_path)
features['template_e_value'] = [hit.e_value]
features['template_sum_probs'] = [hit.sum_probs]
features['template_prob_true'] = [hit.prob_true]
features['template_score'] = [hit.score]
features['template_neff'] = [hit.neff]
features['template_similarity'] = [hit.similarity]
# It is possible there were some errors when parsing the other chains in the
# mmCIF file, but the template features for the chain we want were still
# computed. In such case the mmCIF parsing errors are not relevant.
return SingleHitResult(
features=features, error=None, warning=realign_warning)
except (NoChainsError, NoAtomDataInTemplateError,
TemplateAtomMaskAllZerosError) as e:
# These 3 errors indicate missing mmCIF experimental data rather than a
# problem with the template search, so turn them into warnings.
warning = ('%s_%s (sum_probs: %.2f, rank: %d): feature extracting errors: '
'%s, mmCIF parsing errors: %s'
% (hit_pdb_code, hit_chain_id, hit.sum_probs, hit.index,
str(e), parsing_result.errors))
if strict_error_check:
return SingleHitResult(features=None, error=warning, warning=None)
else:
return SingleHitResult(features=None, error=None, warning=warning)
except Error as e:
error = ('%s_%s (sum_probs: %.2f, rank: %d): feature extracting errors: '
'%s, mmCIF parsing errors: %s'
% (hit_pdb_code, hit_chain_id, hit.sum_probs, hit.index,
str(e), parsing_result.errors))
return SingleHitResult(features=None, error=error, warning=None)
@dataclasses.dataclass(frozen=True)
class TemplateSearchResult:
features: Mapping[str, Any]
errors: Sequence[str]
warnings: Sequence[str]
class TemplateHitFeaturizer:
"""A class for turning hhr hits to template features."""
def __init__(
self,
mmcif_dir: str,
max_template_date: str,
max_hits: int,
kalign_binary_path: str,
release_dates_path: Optional[str],
obsolete_pdbs_path: Optional[str],
strict_error_check: bool = False):
"""Initializes the Template Search.
Args:
mmcif_dir: Path to a directory with mmCIF structures. Once a template ID
is found by HHSearch, this directory is used to retrieve the template
data.
max_template_date: The maximum date permitted for template structures. No
template with date higher than this date will be returned. In ISO8601
date format, YYYY-MM-DD.
max_hits: The maximum number of templates that will be returned.
kalign_binary_path: The path to a kalign executable used for template
realignment.
release_dates_path: An optional path to a file with a mapping from PDB IDs
to their release dates. Thanks to this we don't have to redundantly
parse mmCIF files to get that information.
obsolete_pdbs_path: An optional path to a file containing a mapping from
obsolete PDB IDs to the PDB IDs of their replacements.
strict_error_check: If True, then the following will be treated as errors:
* If any template date is after the max_template_date.
* If any template has identical PDB ID to the query.
* If any template is a duplicate of the query.
* Any feature computation errors.
"""
self._mmcif_dir = mmcif_dir
if not glob.glob(os.path.join(self._mmcif_dir, '*.cif')):
logging.error('Could not find CIFs in %s', self._mmcif_dir)
raise ValueError(f'Could not find CIFs in {self._mmcif_dir}')
try:
self._max_template_date = datetime.datetime.strptime(
max_template_date, '%Y-%m-%d')
except ValueError:
raise ValueError(
'max_template_date must be set and have format YYYY-MM-DD.')
self._max_hits = max_hits
self._kalign_binary_path = kalign_binary_path
self._strict_error_check = strict_error_check
if release_dates_path:
logging.info('Using precomputed release dates %s.', release_dates_path)
self._release_dates = _parse_release_dates(release_dates_path)
else:
self._release_dates = {}
if obsolete_pdbs_path:
logging.info('Using precomputed obsolete pdbs %s.', obsolete_pdbs_path)
self._obsolete_pdbs = _parse_obsolete(obsolete_pdbs_path)
else:
self._obsolete_pdbs = {}
def get_templates(
self,
query_sequence: str,
query_pdb_code: Optional[str],
query_release_date: Optional[datetime.datetime],
hhr_hits: Sequence[parsers.HhrHit]) -> TemplateSearchResult:
"""Computes the templates for given query sequence (more details above)."""
logging.info('Searching for template for: %s', query_pdb_code)
template_features = {}
for template_feature_name in TEMPLATE_FEATURES:
template_features[template_feature_name] = []
# Always use a max_template_date. Set to query_release_date minus 60 days
# if that's earlier.
template_cutoff_date = self._max_template_date
if query_release_date:
delta = datetime.timedelta(days=60)
if query_release_date - delta < template_cutoff_date:
template_cutoff_date = query_release_date - delta
assert template_cutoff_date < query_release_date
assert template_cutoff_date <= self._max_template_date
num_hits = 0
errors = []
warnings = []
for hit in sorted(hhr_hits, key=lambda x: x.sum_probs, reverse=True):
# We got all the templates we wanted, stop processing HHSearch hits.
if num_hits >= self._max_hits:
break
result = _process_single_hit(
query_sequence=query_sequence,
query_pdb_code=query_pdb_code,
hit=hit,
mmcif_dir=self._mmcif_dir,
max_template_date=template_cutoff_date,
release_dates=self._release_dates,
obsolete_pdbs=self._obsolete_pdbs,
strict_error_check=self._strict_error_check,
kalign_binary_path=self._kalign_binary_path)
if result.error:
errors.append(result.error)
# There could be an error even if there are some results, e.g. thrown by
# other unparseable chains in the same mmCIF file.
if result.warning:
warnings.append(result.warning)
if result.features is None:
logging.info('Skipped invalid hit %s, error: %s, warning: %s',
hit.name, result.error, result.warning)
else:
# Increment the hit counter, since we got features out of this hit.
num_hits += 1
for k in template_features:
template_features[k].append(result.features[k])
for name in template_features:
if num_hits > 0:
template_features[name] = np.stack(
template_features[name], axis=0).astype(TEMPLATE_FEATURES[name])
else:
# Make sure the feature has correct dtype even if empty.
template_features[name] = np.array([], dtype=TEMPLATE_FEATURES[name])
return TemplateSearchResult(
features=template_features, errors=errors, warnings=warnings)
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Library to run HHblits from Python."""
import glob
import os
import subprocess
from typing import Any, Mapping, Optional, Sequence
from absl import logging
from alphafold.data.tools import utils
# Internal import (7716).
_HHBLITS_DEFAULT_P = 20
_HHBLITS_DEFAULT_Z = 500
class HHBlits:
"""Python wrapper of the HHblits binary."""
def __init__(self,
*,
binary_path: str,
databases: Sequence[str],
n_cpu: int = 4,
n_iter: int = 3,
e_value: float = 0.001,
maxseq: int = 1_000_000,
realign_max: int = 100_000,
maxfilt: int = 100_000,
min_prefilter_hits: int = 1000,
all_seqs: bool = False,
alt: Optional[int] = None,
p: int = _HHBLITS_DEFAULT_P,
z: int = _HHBLITS_DEFAULT_Z):
"""Initializes the Python HHblits wrapper.
Args:
binary_path: The path to the HHblits executable.
databases: A sequence of HHblits database paths. This should be the
common prefix for the database files (i.e. up to but not including
_hhm.ffindex etc.)
n_cpu: The number of CPUs to give HHblits.
n_iter: The number of HHblits iterations.
e_value: The E-value, see HHblits docs for more details.
maxseq: The maximum number of rows in an input alignment. Note that this
parameter is only supported in HHBlits version 3.1 and higher.
realign_max: Max number of HMM-HMM hits to realign. HHblits default: 500.
maxfilt: Max number of hits allowed to pass the 2nd prefilter.
HHblits default: 20000.
min_prefilter_hits: Min number of hits to pass prefilter.
HHblits default: 100.
all_seqs: Return all sequences in the MSA / Do not filter the result MSA.
HHblits default: False.
alt: Show up to this many alternative alignments.
p: Minimum Prob for a hit to be included in the output hhr file.
HHblits default: 20.
z: Hard cap on number of hits reported in the hhr file.
HHblits default: 500. NB: The relevant HHblits flag is -Z not -z.
Raises:
RuntimeError: If HHblits binary not found within the path.
"""
self.binary_path = binary_path
self.databases = databases
for database_path in self.databases:
if not glob.glob(database_path + '_*'):
logging.error('Could not find HHBlits database %s', database_path)
raise ValueError(f'Could not find HHBlits database {database_path}')
self.n_cpu = n_cpu
self.n_iter = n_iter
self.e_value = e_value
self.maxseq = maxseq
self.realign_max = realign_max
self.maxfilt = maxfilt
self.min_prefilter_hits = min_prefilter_hits
self.all_seqs = all_seqs
self.alt = alt
self.p = p
self.z = z
def query(self, input_fasta_path: str) -> Mapping[str, Any]:
"""Queries the database using HHblits."""
with utils.tmpdir_manager(base_dir='/tmp') as query_tmp_dir:
a3m_path = os.path.join(query_tmp_dir, 'output.a3m')
db_cmd = []
for db_path in self.databases:
db_cmd.append('-d')
db_cmd.append(db_path)
cmd = [
self.binary_path,
'-i', input_fasta_path,
'-cpu', str(self.n_cpu),
'-oa3m', a3m_path,
'-o', '/dev/null',
'-n', str(self.n_iter),
'-e', str(self.e_value),
'-maxseq', str(self.maxseq),
'-realign_max', str(self.realign_max),
'-maxfilt', str(self.maxfilt),
'-min_prefilter_hits', str(self.min_prefilter_hits)]
if self.all_seqs:
cmd += ['-all']
if self.alt:
cmd += ['-alt', str(self.alt)]
if self.p != _HHBLITS_DEFAULT_P:
cmd += ['-p', str(self.p)]
if self.z != _HHBLITS_DEFAULT_Z:
cmd += ['-Z', str(self.z)]
cmd += db_cmd
logging.info('Launching subprocess "%s"', ' '.join(cmd))
process = subprocess.Popen(
cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
with utils.timing('HHblits query'):
stdout, stderr = process.communicate()
retcode = process.wait()
if retcode:
# Logs have a 15k character limit, so log HHblits error line by line.
logging.error('HHblits failed. HHblits stderr begin:')
for error_line in stderr.decode('utf-8').splitlines():
if error_line.strip():
logging.error(error_line.strip())
logging.error('HHblits stderr end')
raise RuntimeError('HHblits failed\nstdout:\n%s\n\nstderr:\n%s\n' % (
stdout.decode('utf-8'), stderr[:500_000].decode('utf-8')))
with open(a3m_path) as f:
a3m = f.read()
raw_output = dict(
a3m=a3m,
output=stdout,
stderr=stderr,
n_iter=self.n_iter,
e_value=self.e_value)
return raw_output
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Library to run HHsearch from Python."""
import glob
import os
import subprocess
from typing import Sequence
from absl import logging
from alphafold.data.tools import utils
# Internal import (7716).
class HHSearch:
"""Python wrapper of the HHsearch binary."""
def __init__(self,
*,
binary_path: str,
databases: Sequence[str],
maxseq: int = 1_000_000):
"""Initializes the Python HHsearch wrapper.
Args:
binary_path: The path to the HHsearch executable.
databases: A sequence of HHsearch database paths. This should be the
common prefix for the database files (i.e. up to but not including
_hhm.ffindex etc.)
maxseq: The maximum number of rows in an input alignment. Note that this
parameter is only supported in HHBlits version 3.1 and higher.
Raises:
RuntimeError: If HHsearch binary not found within the path.
"""
self.binary_path = binary_path
self.databases = databases
self.maxseq = maxseq
for database_path in self.databases:
if not glob.glob(database_path + '_*'):
logging.error('Could not find HHsearch database %s', database_path)
raise ValueError(f'Could not find HHsearch database {database_path}')
def query(self, a3m: str) -> str:
"""Queries the database using HHsearch using a given a3m."""
with utils.tmpdir_manager(base_dir='/tmp') as query_tmp_dir:
input_path = os.path.join(query_tmp_dir, 'query.a3m')
hhr_path = os.path.join(query_tmp_dir, 'output.hhr')
with open(input_path, 'w') as f:
f.write(a3m)
db_cmd = []
for db_path in self.databases:
db_cmd.append('-d')
db_cmd.append(db_path)
cmd = [self.binary_path,
'-i', input_path,
'-o', hhr_path,
'-maxseq', str(self.maxseq)
] + db_cmd
logging.info('Launching subprocess "%s"', ' '.join(cmd))
process = subprocess.Popen(
cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
with utils.timing('HHsearch query'):
stdout, stderr = process.communicate()
retcode = process.wait()
if retcode:
# Stderr is truncated to prevent proto size errors in Beam.
raise RuntimeError(
'HHSearch failed:\nstdout:\n%s\n\nstderr:\n%s\n' % (
stdout.decode('utf-8'), stderr[:100_000].decode('utf-8')))
with open(hhr_path) as f:
hhr = f.read()
return hhr
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Library to run Jackhmmer from Python."""
import os
import subprocess
from typing import Any, Mapping, Optional
from absl import logging
from alphafold.data.tools import utils
# Internal import (7716).
class Jackhmmer:
"""Python wrapper of the Jackhmmer binary."""
def __init__(self,
*,
binary_path: str,
database_path: str,
n_cpu: int = 8,
n_iter: int = 1,
e_value: float = 0.0001,
z_value: Optional[int] = None,
get_tblout: bool = False,
filter_f1: float = 0.0005,
filter_f2: float = 0.00005,
filter_f3: float = 0.0000005,
incdom_e: Optional[float] = None,
dom_e: Optional[float] = None):
"""Initializes the Python Jackhmmer wrapper.
Args:
binary_path: The path to the jackhmmer executable.
database_path: The path to the jackhmmer database (FASTA format).
n_cpu: The number of CPUs to give Jackhmmer.
n_iter: The number of Jackhmmer iterations.
e_value: The E-value, see Jackhmmer docs for more details.
z_value: The Z-value, see Jackhmmer docs for more details.
get_tblout: Whether to save tblout string.
filter_f1: MSV and biased composition pre-filter, set to >1.0 to turn off.
filter_f2: Viterbi pre-filter, set to >1.0 to turn off.
filter_f3: Forward pre-filter, set to >1.0 to turn off.
incdom_e: Domain e-value criteria for inclusion of domains in MSA/next
round.
dom_e: Domain e-value criteria for inclusion in tblout.
"""
self.binary_path = binary_path
self.database_path = database_path
if not os.path.exists(self.database_path):
logging.error('Could not find Jackhmmer database %s', database_path)
raise ValueError(f'Could not find Jackhmmer database {database_path}')
self.n_cpu = n_cpu
self.n_iter = n_iter
self.e_value = e_value
self.z_value = z_value
self.filter_f1 = filter_f1
self.filter_f2 = filter_f2
self.filter_f3 = filter_f3
self.incdom_e = incdom_e
self.dom_e = dom_e
self.get_tblout = get_tblout
def query(self, input_fasta_path: str) -> Mapping[str, Any]:
"""Queries the database using Jackhmmer."""
with utils.tmpdir_manager(base_dir='/tmp') as query_tmp_dir:
sto_path = os.path.join(query_tmp_dir, 'output.sto')
# The F1/F2/F3 are the expected proportion to pass each of the filtering
# stages (which get progressively more expensive), reducing these
# speeds up the pipeline at the expensive of sensitivity. They are
# currently set very low to make querying Mgnify run in a reasonable
# amount of time.
cmd_flags = [
# Don't pollute stdout with Jackhmmer output.
'-o', '/dev/null',
'-A', sto_path,
'--noali',
'--F1', str(self.filter_f1),
'--F2', str(self.filter_f2),
'--F3', str(self.filter_f3),
'--incE', str(self.e_value),
# Report only sequences with E-values <= x in per-sequence output.
'-E', str(self.e_value),
'--cpu', str(self.n_cpu),
'-N', str(self.n_iter)
]
if self.get_tblout:
tblout_path = os.path.join(query_tmp_dir, 'tblout.txt')
cmd_flags.extend(['--tblout', tblout_path])
if self.z_value:
cmd_flags.extend(['-Z', str(self.z_value)])
if self.dom_e is not None:
cmd_flags.extend(['--domE', str(self.dom_e)])
if self.incdom_e is not None:
cmd_flags.extend(['--incdomE', str(self.incdom_e)])
cmd = [self.binary_path] + cmd_flags + [input_fasta_path,
self.database_path]
logging.info('Launching subprocess "%s"', ' '.join(cmd))
process = subprocess.Popen(
cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
with utils.timing(
f'Jackhmmer ({os.path.basename(self.database_path)}) query'):
_, stderr = process.communicate()
retcode = process.wait()
if retcode:
raise RuntimeError(
'Jackhmmer failed\nstderr:\n%s\n' % stderr.decode('utf-8'))
# Get e-values for each target name
tbl = ''
if self.get_tblout:
with open(tblout_path) as f:
tbl = f.read()
with open(sto_path) as f:
sto = f.read()
raw_output = dict(
sto=sto,
tbl=tbl,
stderr=stderr,
n_iter=self.n_iter,
e_value=self.e_value)
return raw_output
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""A Python wrapper for Kalign."""
import os
import subprocess
from typing import Sequence
from absl import logging
from alphafold.data.tools import utils
# Internal import (7716).
def _to_a3m(sequences: Sequence[str]) -> str:
"""Converts sequences to an a3m file."""
names = ['sequence %d' % i for i in range(1, len(sequences) + 1)]
a3m = []
for sequence, name in zip(sequences, names):
a3m.append(u'>' + name + u'\n')
a3m.append(sequence + u'\n')
return ''.join(a3m)
class Kalign:
"""Python wrapper of the Kalign binary."""
def __init__(self, *, binary_path: str):
"""Initializes the Python Kalign wrapper.
Args:
binary_path: The path to the Kalign binary.
Raises:
RuntimeError: If Kalign binary not found within the path.
"""
self.binary_path = binary_path
def align(self, sequences: Sequence[str]) -> str:
"""Aligns the sequences and returns the alignment in A3M string.
Args:
sequences: A list of query sequence strings. The sequences have to be at
least 6 residues long (Kalign requires this). Note that the order in
which you give the sequences might alter the output slightly as
different alignment tree might get constructed.
Returns:
A string with the alignment in a3m format.
Raises:
RuntimeError: If Kalign fails.
ValueError: If any of the sequences is less than 6 residues long.
"""
logging.info('Aligning %d sequences', len(sequences))
for s in sequences:
if len(s) < 6:
raise ValueError('Kalign requires all sequences to be at least 6 '
'residues long. Got %s (%d residues).' % (s, len(s)))
with utils.tmpdir_manager(base_dir='/tmp') as query_tmp_dir:
input_fasta_path = os.path.join(query_tmp_dir, 'input.fasta')
output_a3m_path = os.path.join(query_tmp_dir, 'output.a3m')
with open(input_fasta_path, 'w') as f:
f.write(_to_a3m(sequences))
cmd = [
self.binary_path,
'-i', input_fasta_path,
'-o', output_a3m_path,
'-format', 'fasta',
]
logging.info('Launching subprocess "%s"', ' '.join(cmd))
process = subprocess.Popen(cmd, stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
with utils.timing('Kalign query'):
stdout, stderr = process.communicate()
retcode = process.wait()
logging.info('Kalign stdout:\n%s\n\nstderr:\n%s\n',
stdout.decode('utf-8'), stderr.decode('utf-8'))
if retcode:
raise RuntimeError('Kalign failed\nstdout:\n%s\n\nstderr:\n%s\n'
% (stdout.decode('utf-8'), stderr.decode('utf-8')))
with open(output_a3m_path) as f:
a3m = f.read()
return a3m
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment