feature_processing.py 8.37 KB
Newer Older
zhuwenwen's avatar
zhuwenwen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Feature processing logic for multimer data pipeline."""

from typing import Iterable, MutableMapping, List

from alphafold.common import residue_constants
from alphafold.data import msa_pairing
from alphafold.data import pipeline
import numpy as np

REQUIRED_FEATURES = frozenset({
    'aatype', 'all_atom_mask', 'all_atom_positions', 'all_chains_entity_ids',
    'all_crops_all_chains_mask', 'all_crops_all_chains_positions',
    'all_crops_all_chains_residue_ids', 'assembly_num_chains', 'asym_id',
    'bert_mask', 'cluster_bias_mask', 'deletion_matrix', 'deletion_mean',
    'entity_id', 'entity_mask', 'mem_peak', 'msa', 'msa_mask', 'num_alignments',
    'num_templates', 'queue_size', 'residue_index', 'resolution',
    'seq_length', 'seq_mask', 'sym_id', 'template_aatype',
    'template_all_atom_mask', 'template_all_atom_positions'
})

MAX_TEMPLATES = 4
MSA_CROP_SIZE = 2048


def _is_homomer_or_monomer(chains: Iterable[pipeline.FeatureDict]) -> bool:
  """Checks if a list of chains represents a homomer/monomer example."""
  # Note that an entity_id of 0 indicates padding.
  num_unique_chains = len(np.unique(np.concatenate(
      [np.unique(chain['entity_id'][chain['entity_id'] > 0]) for
       chain in chains])))
  return num_unique_chains == 1


def pair_and_merge(
    all_chain_features: MutableMapping[str, pipeline.FeatureDict]
    ) -> pipeline.FeatureDict:
  """Runs processing on features to augment, pair and merge.

  Args:
    all_chain_features: A MutableMap of dictionaries of features for each chain.

  Returns:
    A dictionary of features.
  """

  process_unmerged_features(all_chain_features)

  np_chains_list = list(all_chain_features.values())

  pair_msa_sequences = not _is_homomer_or_monomer(np_chains_list)

  if pair_msa_sequences:
    np_chains_list = msa_pairing.create_paired_features(
        chains=np_chains_list)
    np_chains_list = msa_pairing.deduplicate_unpaired_sequences(np_chains_list)
  np_chains_list = crop_chains(
      np_chains_list,
      msa_crop_size=MSA_CROP_SIZE,
      pair_msa_sequences=pair_msa_sequences,
      max_templates=MAX_TEMPLATES)
  np_example = msa_pairing.merge_chain_features(
      np_chains_list=np_chains_list, pair_msa_sequences=pair_msa_sequences,
      max_templates=MAX_TEMPLATES)
  np_example = process_final(np_example)
  return np_example


def crop_chains(
    chains_list: List[pipeline.FeatureDict],
    msa_crop_size: int,
    pair_msa_sequences: bool,
    max_templates: int) -> List[pipeline.FeatureDict]:
  """Crops the MSAs for a set of chains.

  Args:
    chains_list: A list of chains to be cropped.
    msa_crop_size: The total number of sequences to crop from the MSA.
    pair_msa_sequences: Whether we are operating in sequence-pairing mode.
    max_templates: The maximum templates to use per chain.

  Returns:
    The chains cropped.
  """

  # Apply the cropping.
  cropped_chains = []
  for chain in chains_list:
    cropped_chain = _crop_single_chain(
        chain,
        msa_crop_size=msa_crop_size,
        pair_msa_sequences=pair_msa_sequences,
        max_templates=max_templates)
    cropped_chains.append(cropped_chain)

  return cropped_chains


def _crop_single_chain(chain: pipeline.FeatureDict,
                       msa_crop_size: int,
                       pair_msa_sequences: bool,
                       max_templates: int) -> pipeline.FeatureDict:
  """Crops msa sequences to `msa_crop_size`."""
  msa_size = chain['num_alignments']

  if pair_msa_sequences:
    msa_size_all_seq = chain['num_alignments_all_seq']
    msa_crop_size_all_seq = np.minimum(msa_size_all_seq, msa_crop_size // 2)

    # We reduce the number of un-paired sequences, by the number of times a
    # sequence from this chain's MSA is included in the paired MSA.  This keeps
    # the MSA size for each chain roughly constant.
    msa_all_seq = chain['msa_all_seq'][:msa_crop_size_all_seq, :]
    num_non_gapped_pairs = np.sum(
        np.any(msa_all_seq != msa_pairing.MSA_GAP_IDX, axis=1))
    num_non_gapped_pairs = np.minimum(num_non_gapped_pairs,
                                      msa_crop_size_all_seq)

    # Restrict the unpaired crop size so that paired+unpaired sequences do not
    # exceed msa_seqs_per_chain for each chain.
    max_msa_crop_size = np.maximum(msa_crop_size - num_non_gapped_pairs, 0)
    msa_crop_size = np.minimum(msa_size, max_msa_crop_size)
  else:
    msa_crop_size = np.minimum(msa_size, msa_crop_size)

  include_templates = 'template_aatype' in chain and max_templates
  if include_templates:
    num_templates = chain['template_aatype'].shape[0]
    templates_crop_size = np.minimum(num_templates, max_templates)

  for k in chain:
    k_split = k.split('_all_seq')[0]
    if k_split in msa_pairing.TEMPLATE_FEATURES:
      chain[k] = chain[k][:templates_crop_size, :]
    elif k_split in msa_pairing.MSA_FEATURES:
      if '_all_seq' in k and pair_msa_sequences:
        chain[k] = chain[k][:msa_crop_size_all_seq, :]
      else:
        chain[k] = chain[k][:msa_crop_size, :]

  chain['num_alignments'] = np.asarray(msa_crop_size, dtype=np.int32)
  if include_templates:
    chain['num_templates'] = np.asarray(templates_crop_size, dtype=np.int32)
  if pair_msa_sequences:
    chain['num_alignments_all_seq'] = np.asarray(
        msa_crop_size_all_seq, dtype=np.int32)
  return chain


def process_final(np_example: pipeline.FeatureDict) -> pipeline.FeatureDict:
  """Final processing steps in data pipeline, after merging and pairing."""
  np_example = _correct_msa_restypes(np_example)
  np_example = _make_seq_mask(np_example)
  np_example = _make_msa_mask(np_example)
  np_example = _filter_features(np_example)
  return np_example


def _correct_msa_restypes(np_example):
  """Correct MSA restype to have the same order as residue_constants."""
  new_order_list = residue_constants.MAP_HHBLITS_AATYPE_TO_OUR_AATYPE
  np_example['msa'] = np.take(new_order_list, np_example['msa'], axis=0)
  np_example['msa'] = np_example['msa'].astype(np.int32)
  return np_example


def _make_seq_mask(np_example):
  np_example['seq_mask'] = (np_example['entity_id'] > 0).astype(np.float32)
  return np_example


def _make_msa_mask(np_example):
  """Mask features are all ones, but will later be zero-padded."""

  np_example['msa_mask'] = np.ones_like(np_example['msa'], dtype=np.float32)

  seq_mask = (np_example['entity_id'] > 0).astype(np.float32)
  np_example['msa_mask'] *= seq_mask[None]

  return np_example


def _filter_features(np_example: pipeline.FeatureDict) -> pipeline.FeatureDict:
  """Filters features of example to only those requested."""
  return {k: v for (k, v) in np_example.items() if k in REQUIRED_FEATURES}


def process_unmerged_features(
    all_chain_features: MutableMapping[str, pipeline.FeatureDict]):
  """Postprocessing stage for per-chain features before merging."""
  num_chains = len(all_chain_features)
  for chain_features in all_chain_features.values():
    # Convert deletion matrices to float.
    chain_features['deletion_matrix'] = np.asarray(
        chain_features.pop('deletion_matrix_int'), dtype=np.float32)
    if 'deletion_matrix_int_all_seq' in chain_features:
      chain_features['deletion_matrix_all_seq'] = np.asarray(
          chain_features.pop('deletion_matrix_int_all_seq'), dtype=np.float32)

    chain_features['deletion_mean'] = np.mean(
        chain_features['deletion_matrix'], axis=0)

    # Add all_atom_mask and dummy all_atom_positions based on aatype.
    all_atom_mask = residue_constants.STANDARD_ATOM_MASK[
        chain_features['aatype']]
    chain_features['all_atom_mask'] = all_atom_mask
    chain_features['all_atom_positions'] = np.zeros(
        list(all_atom_mask.shape) + [3])

    # Add assembly_num_chains.
    chain_features['assembly_num_chains'] = np.asarray(num_chains)

  # Add entity_mask.
  for chain_features in all_chain_features.values():
    chain_features['entity_mask'] = (
        chain_features['entity_id'] != 0).astype(np.int32)