model.py 28.7 KB
Newer Older
chenzhuo's avatar
chenzhuo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
# Copyright (c) OpenMMLab. All rights reserved.
import dataclasses
from abc import abstractmethod
from typing import List

from mmengine import Registry

MODELS = Registry('model', locations=['lmdeploy.model'])


@dataclasses.dataclass
class SamplingParam:
    top_p: float = 0.8
    top_k: float = None
    temperature: float = 0.8
    repetition_penalty: float = 1.0


@MODELS.register_module(name='internlm')
@MODELS.register_module(name='llama')
@MODELS.register_module(name='base')
class BaseModel:
    """Base model."""

    def __init__(self,
                 session_len=2048,
                 top_p=0.8,
                 top_k=None,
                 temperature=0.8,
                 repetition_penalty=1.0,
                 capability='chat',
                 stop_words=None,
                 **kwargs):
        self.session_len = session_len
        self.top_p = top_p
        self.top_k = top_k
        self.temperature = temperature
        self.repetition_penalty = repetition_penalty
        self.stop_words = stop_words
        self.capability = capability

    def get_prompt(self, prompt, sequence_start=True):
        """Return the prompt that is concatenated with other elements in the
        chat template.

        Args:
            prompt (str): user's input prompt
            sequence_start (bool): indicator for the first round chat of a
               session sequence
        Returns:
            str: the concatenated prompt
        """
        if self.capability == 'completion':
            return prompt
        else:
            return self.decorate_prompt(prompt, sequence_start)

    @abstractmethod
    def decorate_prompt(self, prompt, sequence_start):
        return prompt

    @staticmethod
    def _translate_messages(messages: List):
        """Translate messages into system, user speaking list, assistant
        speaking list.

        Args:
            messages (List): chat history
        Returns:
            Turple: consists of system (str), users (List[str]),
                assistants (List[str])
        """
        system = None
        users = []
        assistants = []
        assert isinstance(messages, List)
        for message in messages:
            msg_role = message['role']
            if msg_role == 'system':
                system = message['content']
            elif msg_role == 'user':
                users.append(message['content'])
            elif msg_role == 'assistant':
                assistants.append(message['content'])
            else:
                raise ValueError(f'Unknown role: {msg_role}')
        assistants.append(None)
        return system, users, assistants

    @abstractmethod
    def messages2prompt(self, messages, sequence_start=True):
        """Return the prompt that is concatenated with other elements in the
        chat template. When messages arg is a string, return
        self.get_prompt(messages). When messages arg is a chat history, return
        translated prompt from chat history.

        Args:
            messages (str | List): user's input prompt
        Returns:
            str: the concatenated prompt
        """
        if isinstance(messages, str):
            return self.get_prompt(messages)
        # chat history processing in derived classes

    @property
    def sampling_param(self):
        return SamplingParam(top_p=self.top_p,
                             top_k=self.top_k,
                             temperature=self.temperature,
                             repetition_penalty=self.repetition_penalty)


@MODELS.register_module(name='wizardlM')
@MODELS.register_module(name='vicuna')
class Vicuna(BaseModel):
    """Chat template of vicuna model."""

    def __init__(
            self,
            system="""A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. """,  # noqa: E501
            user='USER',
            assistant='ASSISTANT',
            **kwargs):
        super().__init__(**kwargs)
        self.system = system
        self.user = user
        self.assistant = assistant

    def decorate_prompt(self, prompt, sequence_start=True):
        """Return the prompt that is concatenated with other elements in the
        chat template.

        Args:
            prompt (str): user's input prompt
            sequence_start (bool): indicator for the first round chat of a
               session sequence
        Returns:
            str: the concatenated prompt
        """
        assert self.capability == 'chat', \
            f'{type(self).__name__} has no capability of {self.capability}'
        if sequence_start:
            return f'{self.system} {self.user}: {prompt} {self.assistant}: '
        else:
            return f'</s>{self.user}: {prompt} {self.assistant}: '

    def messages2prompt(self, messages, sequence_start=True):
        """Return the prompt that is concatenated with other elements in the
        chat template.

        Args:
            messages (str | List): user's input prompt
        Returns:
            str: the concatenated prompt
        """
        if isinstance(messages, str):
            return self.get_prompt(messages, sequence_start)
        system, users, assistants = self._translate_messages(messages)
        system = self.system if not system else system
        ret = system + ' '
        for user, assistant in zip(users, assistants):
            if assistant:
                ret += f'{self.user}: {user} {self.assistant}: {assistant}</s>'
            else:
                ret += f'{self.user}: {user} {self.assistant}: '
        return ret


@MODELS.register_module(name='internlm-chat')
@MODELS.register_module(name='internlm-chat-7b')
class InternLMChat7B(BaseModel):
    """Chat template of InternLM model."""

    def __init__(
            self,
            system='<|System|>:',
            meta_instruction="""You are an AI assistant whose name is InternLM (书生·浦语).
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.
""",  # noqa: E501
            user='<|User|>:',
            eoh='\n',
            eoa='<eoa>\n',
            eosys='\n',
            assistant='<|Bot|>:',
            stop_words=['<eoa>'],
            **kwargs):
        super().__init__(**kwargs)
        self.system = system
        self.meta_instruction = meta_instruction
        self.user = user
        self.eoh = eoh
        self.eoa = eoa
        self.eosys = eosys
        self.assistant = assistant
        self.stop_words = stop_words

    def decorate_prompt(self, prompt, sequence_start=True):
        """Return the prompt that is concatenated with other elements in the
        chat template.

        Args:
            prompt (str): user's input prompt
            sequence_start (bool): indicator for the first round chat of a
               session sequence
        Returns:
            str: the concatenated prompt
        """
        assert self.capability == 'chat', \
            f'{type(self).__name__} has no capability of {self.capability}'
        if sequence_start:
            return f'{self.system}{self.meta_instruction}{self.eosys}' \
                   f'{self.user}{prompt}{self.eoh}' \
                   f'{self.assistant}'
        else:
            return f'\n{self.user}{prompt}{self.eoh}' \
                   f'{self.assistant}'

    def messages2prompt(self, messages, sequence_start=True):
        """Return the prompt that is concatenated with other elements in the
        chat template.

        Args:
            messages (str | List): user's input prompt
        Returns:
            str: the concatenated prompt
        """

        if isinstance(messages, str):
            return self.get_prompt(messages, sequence_start)
        eox_map = dict(user=self.eoh, assistant=self.eoa, system=self.eosys)
        ret = ''
        if self.meta_instruction:
            ret += f'{self.system}:{self.meta_instruction}{self.eosys}'

        for message in messages:
            role = message['role']
            content = message['content']
            ret += f'{eval(f"self.{role}")}{content}{eox_map[role]}'
        ret += f'{self.assistant}'
        return ret


@MODELS.register_module(name='internlm-chat-20b')
@MODELS.register_module(name='internlm-chat-7b-8k')
class InternLMChat7B8K(InternLMChat7B):
    """Chat template and generation parameters of InternLM-Chat-7B-8K and
    InternLM-Chat-20B models."""

    def __init__(self, session_len=8192, **kwargs):
        super(InternLMChat7B8K, self).__init__(**kwargs)
        self.session_len = session_len


@MODELS.register_module(name='internlm-20b')
class InternLMBaseModel20B(BaseModel):
    """Generation parameters of InternLM-20B-Base model."""

    def __init__(self, session_len=4096, capability='completion', **kwargs):
        super().__init__(session_len=session_len,
                         capability=capability,
                         **kwargs)


@MODELS.register_module(name='baichuan-7b')
class Baichuan7B(BaseModel):
    """Generation parameters of Baichuan-7B base model."""

    def __init__(self, repetition_penalty=1.1, **kwargs):
        super().__init__(**kwargs)
        self.repetition_penalty = repetition_penalty


@MODELS.register_module(name='baichuan2-7b')
class Baichuan2_7B(BaseModel):
    """Chat template and generation parameters of Baichuan2-7B-Base and
    Baichuan2-7B-Chat models."""

    def __init__(self,
                 temperature=0.3,
                 top_k=5,
                 top_p=0.85,
                 repetition_penalty=1.05,
                 **kwargs):
        super().__init__(temperature=temperature,
                         top_k=top_k,
                         top_p=top_p,
                         repetition_penalty=repetition_penalty,
                         **kwargs)
        self.user_token = '<reserved_106>'  # id = 195
        self.assistant_token = '<reserved_107>'  # id = 196

    def decorate_prompt(self, prompt, sequence_start=True):
        """Return the prompt that is concatenated with other elements in the
        chat template.

        Args:
            prompt (str): user's input prompt
            sequence_start (bool): indicator for the first round chat of a
               session sequence
        Returns:
            str: the concatenated prompt
        """
        assert self.capability == 'chat', \
            f'{type(self).__name__} has no capability of {self.capability}'
        return f'{self.user_token}{prompt}{self.assistant_token}'

    def messages2prompt(self, messages, sequence_start=True):
        """Return the prompt that is concatenated with other elements in the
        chat template.

        Args:
            messages (str | List): user's input prompt
        Returns:
            str: the concatenated prompt
        """
        if isinstance(messages, str):
            return self.get_prompt(messages, sequence_start)
        system, users, assistants = self._translate_messages(messages)
        ret = ''
        for user, assistant in zip(users, assistants):
            ret += f'{self.user_token}{user}{self.assistant_token}'
            if assistant:
                ret += f'{assistant}'
        return ret


@MODELS.register_module(name='puyu')
class Puyu(BaseModel):
    """Chat template of puyu model.This is only for internal usage in Shanghai
    AI Laboratory."""

    def __init__(self,
                 meta_instruction='',
                 system='',
                 eosys='',
                 user='',
                 eoh='',
                 assistant='',
                 eoa='',
                 stop_words=None,
                 **kwargs):
        super().__init__(**kwargs)
        self.meta_instruction = meta_instruction
        self.system = system
        self.user = user
        self.assistant = assistant
        self.stop_words = stop_words
        self.eosys = eosys
        self.eoh = eoh
        self.eoa = eoa

    def decorate_prompt(self, prompt, sequence_start=True):
        assert self.capability == 'chat', \
            f'{type(self).__name__} has no capability of {self.capability}'
        if sequence_start:
            return f'{self.system}{self.meta_instruction}{self.eosys}' \
                   f'{self.user}{prompt}{self.eoh}' \
                   f'{self.assistant}'
        else:
            return f'{self.eoa}{self.user}{prompt}{self.eoh}{self.assistant}'

    def messages2prompt(self, messages, sequence_start=True):
        """Return the prompt that is concatenated with other elements in the
        chat template.

        Args:
            messages (str | List): user's input prompt
            sequence_start (bool): flag to start the sequence
        Returns:
            str: the concatenated prompt
        """
        if isinstance(messages, str):
            return self.get_prompt(messages, sequence_start)
        eox_map = dict(user=self.eoh, assistant=self.eoa, system=self.eosys)
        ret = ''
        if self.meta_instruction:
            ret += f'{self.system}{self.meta_instruction}{self.eosys}'

        for message in messages:
            role = message['role']
            content = message['content']
            ret += f'{eval(f"self.{role}")}{content}{eox_map[role]}'
        ret += f'{self.assistant}'
        return ret


@MODELS.register_module(name='llama2')
class Llama2(BaseModel):
    """Chat template of LLaMA2 model."""

    def __init__(
            self,
            b_inst='[INST]',
            e_inst='[/INST]',
            b_sys='<<SYS>>\n',
            e_sys='\n<</SYS>>\n\n',
            system="""\
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.

If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.""",  # noqa: E501
            session_len=4096,
            **kwargs):
        super().__init__(**kwargs)
        self.b_inst = b_inst
        self.e_inst = e_inst
        self.b_sys = b_sys
        self.e_sys = e_sys
        self.default_sys_prompt = system
        self.session_len = session_len

    def decorate_prompt(self, prompt, sequence_start=True):
        """Return the prompt that is concatenated with other elements in the
        chat template.

        Args:
            prompt (str): user's input prompt
            sequence_start (bool): indicator for the first round chat of a
               session sequence
        Returns:
            str: the concatenated prompt
        """
        assert self.capability == 'chat', \
            f'{type(self).__name__} has no capability of {self.capability}'
        if sequence_start:
            return f'{self.b_inst} ' \
                   f'{self.b_sys} {self.default_sys_prompt} {self.e_sys}' \
                   f'{prompt} {self.e_inst} '

        return f'{self.b_inst} {prompt} {self.e_inst} '

    def messages2prompt(self, messages, sequence_start=True):
        """Return the prompt that is concatenated with other elements in the
        chat template.

        Args:
            messages (str | List): user's input prompt
        Returns:
            str: the concatenated prompt
        """
        if isinstance(messages, str):
            return self.get_prompt(messages, sequence_start)
        system, users, assistants = self._translate_messages(messages)
        system = self.default_sys_prompt if not system else system
        ret = f'{self.b_inst} {self.b_sys} {system} {self.e_sys}'
        for i, (user, assistant) in enumerate(zip(users, assistants)):
            if i != 0:
                ret += f'{self.b_inst} '
            if assistant:
                ret += f'{user} {self.e_inst} {assistant}'
            else:
                ret += f'{user} {self.e_inst} '
        return ret
chenzhuo's avatar
chenzhuo committed
455

chenzhuo's avatar
chenzhuo committed
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
@MODELS.register_module(name='qwen2-110b')
@MODELS.register_module(name='qwen2-72b')
@MODELS.register_module(name='qwen2-14b')
@MODELS.register_module(name='qwen2-7b')
@MODELS.register_module(name='qwen-72b')
@MODELS.register_module(name='qwen-14b')
@MODELS.register_module(name='qwen-7b')
class Qwen7BChat(BaseModel):
    """Chat template for Qwen-7B-Chat."""

    def __init__(self,
                 session_len=8192,
                 top_p=0.5,
                 top_k=40,
                 temperature=1.0,
                 im_start='<|im_start|>',
                 im_end='<|im_end|>',
                 system='You are a helpful assistant.',
                 stop_words=['<|im_end|>'],
                 **kwargs):
        super().__init__(**kwargs)
        self.session_len = session_len
        self.top_p = top_p
        self.top_k = top_k
        self.temperature = temperature

        self.im_start = im_start
        self.im_end = im_end
        self.system = system
        self.stop_words = stop_words

    def decorate_prompt(self, prompt, sequence_start=True):
        assert self.capability == 'chat', \
            f'{type(self).__name__} has no capability of {self.capability}'
        if sequence_start:
            return f'{self.im_start}system\n{self.system}{self.im_end}' \
                   f'\n{self.im_start}user\n{prompt}{self.im_end}' \
                   f'\n{self.im_start}assistant\n'

        return f'\n{self.im_start}user\n{prompt}{self.im_end}' \
               f'\n{self.im_start}assistant\n'

    def messages2prompt(self, messages, sequence_start=True):
        """Return the prompt that is concatenated with other elements in the
        chat template.

        Args:
            messages (str | List): user's input prompt
        Returns:
            str: the concatenated prompt
        """
        if isinstance(messages, str):
            return self.get_prompt(messages, sequence_start)
        system, users, assistants = self._translate_messages(messages)
        system = self.system if not system else system
        ret = f'{self.im_start}system\n{system}{self.im_end}'
        for user, assistant in zip(users, assistants):
            if assistant:
                ret += f'\n{self.im_start}user\n{user}{self.im_end}' \
                       f'\n{self.im_start}assistant\n{assistant}'
            else:
                ret += f'\n{self.im_start}user\n{user}{self.im_end}' \
                       f'\n{self.im_start}assistant\n'
        return ret


@MODELS.register_module(name='codellama')
class CodeLlama(Llama2):

    def __init__(self,
                 system='',
                 session_len=4096,
                 suffix_first=False,
                 stop_words=None,
                 **kwargs):
        super().__init__(**kwargs)
        caps = ['completion', 'infilling', 'chat', 'python']
        assert self.capability in caps, \
            f'{self.capability} is not supported. ' \
            f'The supported capabilities are: {caps}'
        self.default_sys_prompt = system
        self.session_len = session_len
        self.suffix_first = suffix_first
        self.stop_words = stop_words

        # The following sampling parameters refers to https://github.com/facebookresearch/codellama # noqa: E501
        if self.capability == 'completion' or self.capability == 'python':
            self.top_p = kwargs.get('top_p', 0.9)
            self.temperature = kwargs.get('temperature', 0.2)
        if self.capability == 'chat':
            self.top_p = kwargs.get('top_p', 0.95)
            self.temperature = kwargs.get('temperature', 0.2)
        elif self.capability == 'infilling':
            self.top_p = kwargs.get('top_p', 0.9)
            self.temperature = kwargs.get('temperature', 0.0)
            if self.stop_words is None:
                self.stop_words = ['<EOT>']

    def decorate_prompt(self, prompt, sequence_start=True):
        if self.capability == 'infilling':
            return self._infill_prompt(prompt)
        elif self.capability == 'chat':
            return self._get_prompt(prompt, sequence_start)
        else:  # python speicalist
            return prompt

    def _infill_prompt(self, prompt):
        prefix, suffix = prompt.split('<FILL>')
        if self.suffix_first:
            # format as "<PRE> <SUF>{suf} <MID> {pre}"
            prompt = f'<PRE> <SUF>{suffix} <MID> {prefix}'
        else:
            # format as "<PRE> {pre} <SUF>{suf} <MID>"
            prompt = f'<PRE> {prefix} <SUF>{suffix} <MID>'
        return prompt

    def _get_prompt(self, prompt, sequence_start):
        prompt = prompt.strip()
        if sequence_start:
            return f'{self.b_inst} ' \
                   f'{self.b_sys}{self.default_sys_prompt}{self.e_sys}' \
                   f'{prompt} {self.e_inst}'

        return f'{self.b_inst} {prompt} {self.e_inst}'

    def messages2prompt(self, messages, sequence_start=True):
        assert self.capability == 'chat', \
            f'codellama message2prompt only supports chat mode ' \
            f'but got {self.cap} mode'
        return super().messages2prompt(messages, sequence_start)


@MODELS.register_module(name='solar')
class SOLAR(BaseModel):
    """Chat template of SOLAR model.

    `https://huggingface.co/upstage/SOLAR-0-70b-16bit`
    """

    def __init__(self,
                 b_sys='### System:\n',
                 e_sys='\n\n',
                 user='### User:\n',
                 eoh='\n\n',
                 assistant='### Assistant:\n',
                 eoa='\n\n',
                 system='',
                 session_len=2048,
                 **kwargs):
        super().__init__(**kwargs)
        self.b_sys = b_sys
        self.e_sys = e_sys
        self.user = user
        self.eoh = eoh
        self.assistant = assistant
        self.eoa = eoa
        self.system = system
        self.session_len = session_len

    def decorate_prompt(self, prompt, sequence_start=True):
        """Return the prompt that is concatenated with other elements in the
        chat template.

        Args:
            prompt (str): user's input prompt
            sequence_start (bool): indicator for the first round chat of a
               session sequence
        Returns:
            str: the concatenated prompt
        """
        assert self.capability == 'chat', \
            f'{type(self).__name__} has no capability of {self.capability}'
        if sequence_start:
            return f'{self.b_sys}{self.system}{self.e_sys}' \
                   f'{self.user}{prompt}{self.eoh}{self.assistant}'

        return f'{self.user}{prompt}{self.eoh}{self.assistant}'

    def messages2prompt(self, messages, sequence_start=True):
        """Return the prompt that is concatenated with other elements in the
        chat template.

        Args:
            messages (str | List): user's input prompt
        Returns:
            str: the concatenated prompt
        """
        if isinstance(messages, str):
            return self.get_prompt(messages, sequence_start)
        system, users, assistants = self._translate_messages(messages)
        system = self.system if not system else system
        ret = f'{self.b_sys}{system}{self.e_sys}'
        for i, (user, assistant) in enumerate(zip(users, assistants)):
            ret += f'{self.user}{user}{self.eoh}{self.assistant}'
            if assistant:
                ret += f'{assistant}{self.eoa}'
        return ret


@MODELS.register_module(name='ultracm')
@MODELS.register_module(name='ultralm')
class UltraChat(BaseModel):
    """Template of UltraCM and UltraLM models.

    `https://huggingface.co/openbmb/UltraCM-13b`
    `https://huggingface.co/openbmb/UltraLM-13b`
    """

    def __init__(
            self,
            system="""User: A one-turn chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, very detailed, and polite answers to the user's questions.</s>""",  # noqa: E501
            eos='</s>',
            user='User: ',
            assistant='Assistant: ',
            session_len=2048,
            **kwargs):
        super().__init__(**kwargs)
        self.system = system
        self.eos = eos
        self.session_len = session_len
        self.user = user
        self.assistant = assistant

    def decorate_prompt(self, prompt, sequence_start=True):
        """Return the prompt that is concatenated with other elements in the
        chat template.

        Args:
            prompt (str): the input prompt
            sequence_start (bool): indicator for the first round chat of a
               session sequence
        Returns:
            str: the concatenated prompt
        """
        assert self.capability == 'chat', \
            f'{type(self).__name__} has no capability of {self.capability}'
        if sequence_start:
            return f'{self.system}\n{self.user}{prompt}{self.eos}' \
                   f'\n{self.assistant}'

        return f'\n{self.user}{prompt}{self.eos}' \
               f'\n{self.assistant}'

    def messages2prompt(self, messages, sequence_start=True):
        """Return the prompt that is concatenated with other elements in the
        chat template. Only evaluate the last instruction completion pair.

        Args:
            messages (str | List): user's input prompt
        Returns:
            str: the concatenated prompt
        """
        if isinstance(messages, str):
            return self.get_prompt(messages, sequence_start)
        system, users, assistants = self._translate_messages(messages)
        system = self.system if not system else system
        ret = f'{system}'
        for user, assistant in zip(users, assistants):
            if assistant:
                ret += f'\n{self.user}{user}{self.eos}' \
                       f'\n{self.assistant}{assistant}{self.eos}'
            else:
                ret += f'\n{self.user}{user}{self.eos}' \
                       f'\n{self.assistant}'
        return ret


@MODELS.register_module(name='yi')
class Yi(BaseModel):
    """Chat template of Yi model."""

    def __init__(self,
                 system='<|im_start|>system\n',
                 meta_instruction=None,
                 user='<|im_start|>user\n',
                 eoh='<|im_end|>\n',
                 eoa='<|im_end|>\n',
                 eosys='<|im_end|>\n',
                 assistant='<|im_start|>assistant\n',
                 stop_words=['<|im_end|>', '<|endoftext|>'],
                 **kwargs):
        super().__init__(**kwargs)
        self.system = system
        self.meta_instruction = meta_instruction
        self.user = user
        self.eoh = eoh
        self.eoa = eoa
        self.eosys = eosys
        self.assistant = assistant
        self.stop_words = stop_words

    def decorate_prompt(self, prompt, sequence_start=True):
        """Return the prompt that is concatenated with other elements in the
        chat template.

        Args:
            prompt (str): user's input prompt
            sequence_start (bool): indicator for the first round chat of a
               session sequence
        Returns:
            str: the concatenated prompt
        """
        assert self.capability == 'chat', \
            f'{type(self).__name__} has no capability of {self.capability}'
        if sequence_start:
            if self.meta_instruction is None:
                return f'{self.user}{prompt}{self.eoh}' \
                   f'{self.assistant}'
            return f'{self.system}{self.meta_instruction}{self.eosys}' \
                   f'{self.user}{prompt}{self.eoh}' \
                   f'{self.assistant}'
        else:
            return f'{self.user}{prompt}{self.eoh}' \
                   f'{self.assistant}'

    def messages2prompt(self, messages, sequence_start=True):
        """Return the prompt that is concatenated with other elements in the
        chat template.

        Args:
            messages (str | List): user's input prompt
        Returns:
            str: the concatenated prompt
        """

        if isinstance(messages, str):
            return self.get_prompt(messages, sequence_start)
        eox_map = dict(user=self.eoh, assistant=self.eoa, system=self.eosys)
        ret = ''
        if self.meta_instruction:
            ret += f'{self.system}:{self.meta_instruction}{self.eosys}'

        for message in messages:
            role = message['role']
            content = message['content']
            ret += f'{eval(f"self.{role}")}{content}{eox_map[role]}'
        ret += f'{self.assistant}'
        return ret


def main(model_name: str = 'test'):
    assert model_name in MODELS.module_dict.keys(), \
        f"'{model_name}' is not supported. " \
        f'The supported models are: {MODELS.module_dict.keys()}'
    model = MODELS.get(model_name)()
    prompt = model.get_prompt(prompt='hi')
    print(prompt)
    print(f'session_len: {model.session_len}')


if __name__ == '__main__':
    import fire

    fire.Fire(main)