painter_inference_depth.py 5.49 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# --------------------------------------------------------
# Images Speak in Images: A Generalist Painter for In-Context Visual Learning (https://arxiv.org/abs/2212.02499)
# Github source: https://github.com/baaivision/Painter
# Copyright (c) 2022 Beijing Academy of Artificial Intelligence (BAAI)
# Licensed under The MIT License [see LICENSE for details]
# By Xinlong Wang, Wen Wang
# Based on MAE, BEiT, detectron2, Mask2Former, bts, mmcv, mmdetetection, mmpose, MIRNet, MPRNet, and Uformer codebases
# --------------------------------------------------------'

import sys
import os
import argparse

import torch
import torch.nn.functional as F
import numpy as np
import glob
import tqdm

import matplotlib.pyplot as plt
from PIL import Image

sys.path.append('.')
import models_painter


imagenet_mean = np.array([0.485, 0.456, 0.406])
imagenet_std = np.array([0.229, 0.224, 0.225])


def show_image(image, title=''):
    # image is [H, W, 3]
    assert image.shape[2] == 3
    plt.imshow(torch.clip((image * imagenet_std + imagenet_mean) * 255, 0, 255).int())
    plt.title(title, fontsize=16)
    plt.axis('off')
    return


def prepare_model(chkpt_dir, arch='painter_vit_large_patch16_input896x448_win_dec64_8glb_sl1'):
    # build model
    model = getattr(models_painter, arch)()
    # load model
    checkpoint = torch.load(chkpt_dir, map_location='cuda:0')
    msg = model.load_state_dict(checkpoint['model'], strict=False)
    print(msg)
    model.eval()
    return model


def run_one_image(img, tgt, size, model, out_path, device):
    x = torch.tensor(img)
    x = x.unsqueeze(dim=0)
    x = torch.einsum('nhwc->nchw', x)

    tgt = torch.tensor(tgt)
    tgt = tgt.unsqueeze(dim=0)
    tgt = torch.einsum('nhwc->nchw', tgt)

    bool_masked_pos = torch.zeros(model.patch_embed.num_patches)
    bool_masked_pos[model.patch_embed.num_patches//2:] = 1
    bool_masked_pos = bool_masked_pos.unsqueeze(dim=0)
    valid = torch.ones_like(tgt)
chenych's avatar
chenych committed
64

chenych's avatar
chenych committed
65
66
67
68
69
70
71
72
73
74
    loss, y, mask = model(x.float().to(device), tgt.float().to(device), bool_masked_pos.to(device), valid.float().to(device))
    y = model.unpatchify(y)
    y = torch.einsum('nchw->nhwc', y).detach().cpu()

    output = y[0, y.shape[1]//2:, :, :]
    output = torch.clip((output * imagenet_std + imagenet_mean) * 10000, 0, 10000)
    output = F.interpolate(output[None, ...].permute(0, 3, 1, 2), size=[size[1], size[0]], mode='bilinear').permute(0, 2, 3, 1)[0]
    output = output.mean(-1).int()
    output = Image.fromarray(output.numpy())
    output.save(out_path)
chenych's avatar
chenych committed
75

chenych's avatar
chenych committed
76
77
78
79
80
81
82
83
84
85

def get_args_parser():
    parser = argparse.ArgumentParser('NYU Depth V2', add_help=False)
    parser.add_argument('--ckpt_path', type=str, help='path to ckpt',
                        default='')
    parser.add_argument('--model', type=str, help='dir to ckpt',
                        default='painter_vit_large_patch16_input896x448_win_dec64_8glb_sl1')
    parser.add_argument('--prompt', type=str, help='prompt image in train set',
                        default='study_room_0005b/rgb_00094')
    parser.add_argument('--input_size', type=int, default=448)
chenych's avatar
chenych committed
86
    parser.add_argument('--data_dir', type=str, default="datasets")
chenych's avatar
chenych committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
    return parser.parse_args()


if __name__ == '__main__':
    args = get_args_parser()

    ckpt_path = args.ckpt_path

    path_splits = ckpt_path.split('/')
    ckpt_dir, ckpt_file = path_splits[-2], path_splits[-1]

    model_painter = prepare_model(ckpt_path, args.model)
    print('Model loaded.')

    device = torch.device("cuda")
    model_painter.to(device)

    dst_dir = os.path.join('models_inference', ckpt_dir,
                           "nyuv2_depth_inference_{}_{}/".format(ckpt_file, args.prompt))
    print(dst_dir)
    if not os.path.exists(dst_dir):
        os.makedirs(dst_dir)
chenych's avatar
chenych committed
109
    img_src_dir = "{}/nyu_depth_v2/official_splits/test/".format(args.data_dir)
chenych's avatar
chenych committed
110
    img_path_list = glob.glob(img_src_dir + "/*/rgb*g")
chenych's avatar
chenych committed
111
112
    img2_path = "{}/nyu_depth_v2/sync/{}.jpg".format(args.data_dir, args.prompt)
    tgt_path = "{}/nyu_depth_v2/sync/{}.png".format(args.data_dir, args.prompt.replace('rgb', 'sync_depth'))
chenych's avatar
chenych committed
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
    tgt2_path = tgt_path

    res, hres = args.input_size, args.input_size

    for img_path in tqdm.tqdm(img_path_list):
        room_name = img_path.split("/")[-2]
        img_name = img_path.split("/")[-1].split(".")[0]
        out_path = dst_dir + "/" + room_name + "_" + img_name + ".png"
        img = Image.open(img_path).convert("RGB")
        size = img.size
        img = img.resize((res, hres))
        img = np.array(img) / 255.
        img2 = Image.open(img2_path).convert("RGB")
        img2 = img2.resize((res, hres))
        img2 = np.array(img2) / 255.
        img = np.concatenate((img2, img), axis=0)
        assert img.shape == (2 * res, res, 3)
        # normalize by ImageNet mean and std
        img = img - imagenet_mean
        img = img / imagenet_std

        tgt = Image.open(tgt_path)
        tgt = np.array(tgt) / 10000.
        tgt = tgt * 255
        tgt = Image.fromarray(tgt).convert("RGB")
        tgt = tgt.resize((res, hres))
        tgt = np.array(tgt) / 255.
        tgt2 = Image.open(tgt2_path)
        tgt2 = np.array(tgt2) / 10000.
        tgt2 = tgt2 * 255
        tgt2 = Image.fromarray(tgt2).convert("RGB")
        tgt2 = tgt2.resize((res, hres))
        tgt2 = np.array(tgt2) / 255.
        tgt = np.concatenate((tgt2, tgt), axis=0)

        assert tgt.shape == (2 * res, res, 3)
        # normalize by ImageNet mean and std
        tgt = tgt - imagenet_mean
        tgt = tgt / imagenet_std

        torch.manual_seed(2)
        run_one_image(img, tgt, size, model_painter, out_path, device)