painter_inference_lol.py 6.67 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# --------------------------------------------------------
# Images Speak in Images: A Generalist Painter for In-Context Visual Learning (https://arxiv.org/abs/2212.02499)
# Github source: https://github.com/baaivision/Painter
# Copyright (c) 2022 Beijing Academy of Artificial Intelligence (BAAI)
# Licensed under The MIT License [see LICENSE for details]
# By Xinlong Wang, Wen Wang
# Based on MAE, BEiT, detectron2, Mask2Former, bts, mmcv, mmdetetection, mmpose, MIRNet, MPRNet, and Uformer codebases
# --------------------------------------------------------'

import sys
import os
import warnings

import requests
import argparse

import torch
import torch.nn.functional as F
import numpy as np
import glob
import tqdm

import matplotlib.pyplot as plt
from PIL import Image

sys.path.append('.')
import models_painter

from skimage.metrics import peak_signal_noise_ratio as psnr_loss
from skimage.metrics import structural_similarity as ssim_loss


imagenet_mean = np.array([0.485, 0.456, 0.406])
imagenet_std = np.array([0.229, 0.224, 0.225])


def prepare_model(chkpt_dir, arch='painter_vit_large_patch16_input896x448_win_dec64_8glb_sl1'):
    # build model
    model = getattr(models_painter, arch)()
    # load model
    checkpoint = torch.load(chkpt_dir, map_location='cuda:0')
    msg = model.load_state_dict(checkpoint['model'], strict=False)
    print(msg)
    return model


def run_one_image(img, tgt, size, model, out_path, device):
    x = torch.tensor(img)
    x = x.unsqueeze(dim=0)
    x = torch.einsum('nhwc->nchw', x)

    tgt = torch.tensor(tgt)
    tgt = tgt.unsqueeze(dim=0)
    tgt = torch.einsum('nhwc->nchw', tgt)

    bool_masked_pos = torch.zeros(model.patch_embed.num_patches)
    bool_masked_pos[model.patch_embed.num_patches//2:] = 1
    bool_masked_pos = bool_masked_pos.unsqueeze(dim=0)

    valid = torch.ones_like(tgt)
    loss, y, mask = model(x.float().to(device), tgt.float().to(device), bool_masked_pos.to(device), valid.float().to(device))
    y = model.unpatchify(y)
    y = torch.einsum('nchw->nhwc', y).detach().cpu()

    output = y[0, y.shape[1]//2:, :, :]
    output = output * imagenet_std + imagenet_mean
    output = F.interpolate(
        output[None, ...].permute(0, 3, 1, 2), size=[size[1], size[0]], mode='bicubic').permute(0, 2, 3, 1)[0]

    return output.numpy()


def myPSNR(tar_img, prd_img):
    imdff = np.clip(prd_img, 0, 1) - np.clip(tar_img, 0, 1)
    rmse = np.sqrt((imdff ** 2).mean())
    ps = 20 * np.log10(1 / rmse)
    return ps


def get_args_parser():
    parser = argparse.ArgumentParser('low-light enhancement', add_help=False)
    parser.add_argument('--ckpt_path', type=str, help='path to ckpt', default='')
    parser.add_argument('--model', type=str, help='dir to ckpt',
                        default='painter_vit_large_patch16_input896x448_win_dec64_8glb_sl1')
    parser.add_argument('--prompt', type=str, help='prompt image in train set',
                        default='100')
    parser.add_argument('--input_size', type=int, default=448)
chenych's avatar
chenych committed
88
    parser.add_argument('--data_dir', type=str, default='datasets')
chenych's avatar
chenych committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
    parser.add_argument('--save', action='store_true', help='save predictions',
                        default=False)
    return parser.parse_args()


if __name__ == '__main__':
    args = get_args_parser()

    ckpt_path = args.ckpt_path
    model = args.model
    prompt = args.prompt
    input_size = args.input_size

    path_splits = ckpt_path.split('/')
    ckpt_dir, ckpt_file = path_splits[-2], path_splits[-1]
    dst_dir = os.path.join('models_inference', ckpt_dir.split('/')[-1],
                           "lol_inference_{}_{}".format(ckpt_file, os.path.basename(prompt).split(".")[0]))
    if not os.path.exists(dst_dir):
        os.makedirs(dst_dir)
    print("output_dir: {}".format(dst_dir))

    model_painter = prepare_model(ckpt_path, model)
    print('Model loaded.')

    device = torch.device("cuda")
    model_painter.to(device)

chenych's avatar
chenych committed
116
    img_src_dir = "{}/light_enhance/eval15/low".format(args.data_dir)
chenych's avatar
chenych committed
117
118
    img_path_list = glob.glob(os.path.join(img_src_dir, "*.png"))

chenych's avatar
chenych committed
119
120
    img2_path = "{}/light_enhance/our485/low/{}.png".format(args.data_dir, prompt)
    tgt2_path = "{}/light_enhance/our485/high/{}.png".format(args.data_dir, prompt)
chenych's avatar
chenych committed
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
    print('prompt: {}'.format(tgt2_path))

    # load the shared prompt image pair
    img2 = Image.open(img2_path).convert("RGB")
    img2 = img2.resize((input_size, input_size))
    img2 = np.array(img2) / 255.

    tgt2 = Image.open(tgt2_path)
    tgt2 = tgt2.resize((input_size, input_size))
    tgt2 = np.array(tgt2) / 255.

    psnr_val_rgb = []
    ssim_val_rgb = []
    model_painter.eval()
    for img_path in tqdm.tqdm(img_path_list):
        """ Load an image """
        img_name = os.path.basename(img_path)
        out_path = os.path.join(dst_dir, img_name)
        img_org = Image.open(img_path).convert("RGB")
        size = img_org.size
        img = img_org.resize((input_size, input_size))
        img = np.array(img) / 255.

        # load gt
        rgb_gt = Image.open(img_path.replace('low', 'high')).convert("RGB")  # irrelevant to prompt-type
        rgb_gt = np.array(rgb_gt) / 255.

        img = np.concatenate((img2, img), axis=0)
        assert img.shape == (input_size * 2, input_size, 3)
        # normalize by ImageNet mean and std
        img = img - imagenet_mean
        img = img / imagenet_std

        tgt = tgt2  # tgt is not available
        tgt = np.concatenate((tgt2, tgt), axis=0)

        assert tgt.shape == (input_size * 2, input_size, 3)
        # normalize by ImageNet mean and std
        tgt = tgt - imagenet_mean
        tgt = tgt / imagenet_std

        # make random mask reproducible (comment out to make it change)
        torch.manual_seed(2)

        output = run_one_image(img, tgt, size, model_painter, out_path, device)
        rgb_restored = output
        rgb_restored = np.clip(rgb_restored, 0, 1)

        psnr = psnr_loss(rgb_restored, rgb_gt)
        ssim = ssim_loss(rgb_restored, rgb_gt, multichannel=True)
        psnr_val_rgb.append(psnr)
        ssim_val_rgb.append(ssim)
        print("PSNR:", psnr, ", SSIM:", ssim, img_name, rgb_restored.shape)

        if args.save:
            output = rgb_restored * 255
            output = Image.fromarray(output.astype(np.uint8))
            output.save(out_path)

        with open(os.path.join(dst_dir, 'psnr_ssim.txt'), 'a') as f:
            f.write(img_name+' ---->'+" PSNR: %.4f, SSIM: %.4f] " % (psnr, ssim)+'\n')

    psnr_val_rgb = sum(psnr_val_rgb) / len(img_path_list)
    ssim_val_rgb = sum(ssim_val_rgb) / len(img_path_list)
    print("PSNR: %f, SSIM: %f " % (psnr_val_rgb, ssim_val_rgb))
    print(ckpt_path)
    with open(os.path.join(dst_dir, 'psnr_ssim.txt'), 'a') as f:
        f.write("PSNR: %.4f, SSIM: %.4f] " % (psnr_val_rgb, ssim_val_rgb)+'\n')