COCOCAInstSegEvaluatorCustom.py 15.8 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import glob
import json
import os
import argparse

import numpy as np
import pycocotools.mask as mask_util
import itertools
from detectron2.utils.file_io import PathManager
from detectron2.structures import Boxes, BoxMode, Instances, BitMasks, pairwise_iou

import torch
import torch.nn.functional as F
import tqdm
from PIL import Image
import matplotlib.pyplot as plt
from detectron2.evaluation import COCOEvaluator
from detectron2.evaluation.coco_evaluation import instances_to_coco_json

from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval


import sys
sys.path.insert(0, "./")

from util.matrix_nms import mask_matrix_nms


def get_args_parser():
    parser = argparse.ArgumentParser('COCO class-agnostic instance segmentation', add_help=False)
    parser.add_argument('--pred_dir', type=str, help='dir to ckpt',
                        default=None)
    parser.add_argument('--post_type', type=str, help='type of post-processing',
                        default="threshold", choices=["minmax", "threshold"])
    parser.add_argument('--dist_thr', type=float, help='dir to ckpt',
                        default=19.)
    parser.add_argument('--num_windows', type=int, default=4)
chenych's avatar
chenych committed
39
    parser.add_argument('--data_dir', type=str, default="datasets")
chenych's avatar
chenych committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
    return parser.parse_args()


def define_colors_per_location_r_gb(num_location_r=16, num_location_gb=20):
    sep_r = 255 // num_location_r  # 255 for bigger sep to bg
    sep_gb = 256 // num_location_gb + 1  # +1 for bigger sep in gb

    color_dict = {}
    # R = G = B = 0
    # B += separation_per_channel  # offset for the first loop
    for global_y in range(4):
        for global_x in range(4):
            global_locat = (global_x, global_y)
            global_locat_sum = global_y * 4 + global_x
            R = 255 - global_locat_sum * sep_r
            for local_y in range(num_location_gb):
                for local_x in range(num_location_gb):
                    local_locat = (local_x, local_y)
                    G = 255 - local_y * sep_gb
                    B = 255 - local_x * sep_gb

                    assert (R < 256) and (G < 256) and (B < 256)
                    assert (R >= 0) and (G >= 0) and (B >= 0)
                    assert (R, G, B) not in color_dict.values()

                    location = (global_locat, local_locat)
                    color_dict[location] = (R, G, B)
                    # print(location, R, G, B)
    return color_dict


def load_image_with_retry(image_path):
    while True:
        try:
            img = Image.open(image_path)
            return img
        except OSError as e:
            print(f"Catched exception: {str(e)}. Re-trying...")
            import time
            time.sleep(1)


class COCOEvaluatorCustom(COCOEvaluator):
    def __init__(
        self,
        dataset_name,
        tasks=None,
        output_dir=None,
        palette_dict=None,
        pred_dir=None,
        num_windows=4,
        topk=100,
        post_type="minmax",
        dist_thr=5.,
    ):
        """
        Args:
            dataset_name (str): name of the dataset to be evaluated.
            distributed (bool): if True, will collect results from all ranks for evaluation.
                Otherwise, will evaluate the results in the current process.
            output_dir (str): an output directory to dump results.
            palette_dict: location to color
        """
        super().__init__(
            dataset_name=dataset_name,
            tasks=tasks,
            output_dir=output_dir,
        )

        self.post_type = post_type
        if not isinstance(dist_thr, list):
            dist_thr = [dist_thr]
        self.dist_thr_list = dist_thr
        self.location2color = palette_dict
        self.color2location = {v: k for k, v in self.location2color.items()}
        palette = [v for k, v in palette_dict.items()]
        palette.append((0, 0, 0))
        self.palette = torch.tensor(palette, dtype=torch.float, device="cuda")  # (num_cls, 3)
        self.pred_dir = pred_dir
        self.topk = topk
        self._do_evaluation = False  # we only save the results
        self.file_path = None  # path to json format results for future Evaluation
        self.num_windows = num_windows

    def process(self, inputs, outputs):
        """
        Args:
            inputs: the inputs to a COCO model (e.g., GeneralizedRCNN).
                It is a list of dict. Each dict corresponds to an image and
                contains keys like "height", "width", "file_name", "image_id".
            outputs: the outputs of a COCO model. It is a list of dicts with key
                "instances" that contains :class:`Instances`.
        """
        # keys in input: "image_id",
        # keys in output: "instances", which contains pred_boxes, scores, pred_classes, pred_masks
        for input, output_raw in tqdm.tqdm(zip(inputs, outputs)):
            if self.post_type == "minmax":
                output, dist_map, pred_map = self.post_process_segm_output_by_minmax(output_raw['pred_path'])
            elif self.post_type == "threshold":
                output = self.post_process_segm_output_by_threshold(output_raw['pred_path'],
                                                                    dist_thr_list=self.dist_thr_list)
            else:
                raise NotImplementedError

            prediction = {"image_id": input["image_id"]}

            if "instances" in output:
                instances = output["instances"].to(self._cpu_device)
                prediction["instances"] = instances_to_coco_json(instances, input["image_id"])
            if "proposals" in output:
                prediction["proposals"] = output["proposals"].to(self._cpu_device)
            if len(prediction) > 1:
                self._predictions.append(prediction)

    def _eval_predictions(self, predictions, img_ids=None):
        """
        Evaluate predictions. Fill self._results with the metrics of the tasks.
        """
        self._logger.info("Preparing results for COCO format ...")
        coco_results = list(itertools.chain(*[x["instances"] for x in predictions]))

        assert self._output_dir
        file_path = os.path.join(self._output_dir, "coco_instances_results.json")
        self._logger.info("Saving results to {}".format(file_path))
        assert self.file_path is None
        self.file_path = file_path
        with PathManager.open(file_path, "w") as f:
            f.write(json.dumps(coco_results))
            f.flush()

        assert not self._do_evaluation
        return

    def post_process_segm_output_by_minmax(self, pred_path):
        """
        Post-processing to turn output segm image to class index map

        Args:
            pred_path:  path to a (H, W, 3) image

        Returns:
            class_map: (H, W)
        """
        # load prediction
        segm = load_image_with_retry(pred_path)
        height, width = segm.height, segm.width
        segm = np.array(segm)  # (h, w, 3)

        # get location cat for each pixel
        segm = torch.from_numpy(segm).float().to(self.palette.device)  # (h, w, 3)
        h, w, k = segm.shape[0], segm.shape[1], self.palette.shape[0]

        # dist = torch.abs(segm.view(h, w, 1, 3) - self.palette.view(1, 1, k, 3))  # (h, w, k, 3)
        # dist = torch.sum(dist, dim=-1)  # (h, w, k)
        # # both (h, w), thus the k dim in dist is not needed, significantly reduce memory
        # dist_map, pred = torch.min(dist, dim=-1)

        # split window then merge
        dist_map_list = []
        pred_map_list = []
        # split in height
        window_size_h = h // self.num_windows + 1  # +1 to make sure no left
        for i in range(self.num_windows):
            h_start = i * window_size_h
            h_end = (i + 1) * window_size_h
            dist = torch.abs(segm.view(h, w, 1, 3)[h_start: h_end] - self.palette.view(1, 1, k, 3))  # (h, w, k, 3)
            dist = torch.sum(dist, dim=-1)  # (h, w, k)
            # both (h, w), thus the k dim in dist is not needed, significantly reduce memory
            dist_map, pred_map = torch.min(dist, dim=-1)
            dist_map_list.append(dist_map)
            pred_map_list.append(pred_map)
            # del dist
        dist_map = torch.cat(dist_map_list, dim=0)
        pred_map = torch.cat(pred_map_list, dim=0)
        assert dist_map.shape[0] == pred_map.shape[0] == h

        # get instances from the location cat map
        mask_list = []
        score_list = []
        class_list = []
        for location_cat in torch.unique(pred_map):
            if location_cat == len(self.palette) - 1:
                class_list.append(0)  # bg class will be ignored in eval
            else:
                class_list.append(1)
            mask = pred_map == location_cat  # (h, w)
            score_neg = torch.mean(dist_map[mask])
            mask_list.append(mask)
            score_list.append(score_neg)
        scores_neg = torch.stack(score_list)
        scores = 1 - scores_neg / max(torch.max(scores_neg), 1.)
        masks = torch.stack(mask_list)
        classes = torch.tensor(class_list, device=masks.device)

        # # sort by score and keep topk
        # num_pred = len(score_list)
        # if num_pred > self.topk:
        #     _, topk_indices = scores.topk(self.topk, sorted=False)
        #     scores = scores[topk_indices]
        #     masks = masks[topk_indices]

        image_size = (height, width)
        result = Instances(image_size)
        result.pred_masks = masks.float()
        result.scores = scores
        # Uncomment the following to get boxes from masks (this is slow)
        # result.pred_boxes = BitMasks(mask_pred > 0).get_bounding_boxes()
        result.pred_boxes = Boxes(torch.zeros(masks.shape[0], 4))
        result.pred_classes = classes

        output = {'instances': result}
        return output, dist_map, pred_map

    def post_process_segm_output_by_threshold(self, pred_path, dist_thr_list=None, keep_all=False):
        """
        Post-processing to turn output segm image to class index map

        Args:
            pred_path:  path to a (H, W, 3) image
            dist_thr_list
            keep_all: return all preds w/o nms and w/o top100

        Returns:
            class_map: (H, W)
        """
        if dist_thr_list is None:
            dist_thr_list = self.dist_thr_list
        # load prediction
        segm = load_image_with_retry(pred_path)
        height, width = segm.height, segm.width
        segm = np.array(segm)  # (h, w, 3)

        # get location cat for each pixel
        segm = torch.from_numpy(segm).float().to(self.palette.device)  # (h, w, 3)
        h, w, k = segm.shape[0], segm.shape[1], self.palette.shape[0]

        # make pred for each location category then merge
        mask_list = []
        dist_list = []
        maskness_neg_list = []

        all_palette = self.palette[:-1]
        num_color_each_time = 800  # +1 for bg
        num_parallels = int(all_palette.shape[0] // num_color_each_time) + 1
        for dist_thr in dist_thr_list:
            for idx in range(num_parallels):
                start_idx = idx * num_color_each_time
                end_idx = (idx + 1) * num_color_each_time
                color = all_palette[start_idx:end_idx]  # (num_color, 3)
                dist = torch.abs(segm.view(1, h, w, 3) - color.view(-1, 1, 1, 3))  # (num_color, h, w, 3)
                dist = torch.sum(dist, dim=-1) / 3.  # (num_color, h, w)
                mask = dist < dist_thr  # (num_color, h, w)
                num_pos = mask.sum((1, 2))
                keep = num_pos > 0
                mask = mask[keep]
                dist = dist[keep]
                if len(dist) > 0:
                    maskness_neg = (dist * mask.float()).sum((1, 2)) / (mask.sum((1, 2)))  # (num_color[keep], )
                    mask_list.append(mask)
                    # dist_list.append(dist)  # keep dist for debug only
                    maskness_neg_list.append(maskness_neg)

        # handle cases of empty pred
        if len(mask_list) == 0:
            image_size = (height, width)
            result = Instances(image_size)
            result.pred_masks = torch.zeros(1, height, width)
            result.scores = torch.zeros(1)
            result.pred_boxes = Boxes(torch.zeros(1, 4))
            result.pred_classes = torch.zeros(1)
            output = {'instances': result}
            return output

        # dists = torch.cat(dist_list, dim=0)  # (num_inst, h, w)
        masks = torch.cat(mask_list, dim=0)  # (num_inst, h, w)

        maskness_neg = torch.cat(maskness_neg_list, dim=0)  # (num_inst, )

        # the first sort before nms for keeping topk
        topk = 2000
        maskness_neg, indices = torch.sort(maskness_neg, descending=False)
        masks = masks[indices]
        masks = masks[:topk]
        maskness_neg = maskness_neg[:topk]  # (topk, h, w)

        # get scores
        scores = 1 - maskness_neg / max(torch.max(maskness_neg), 1.)  # (topk,)
        labels = torch.ones(masks.shape[0], device=masks.device)

        if not keep_all:
            # apply mask nms here
            scores, labels, masks, keep_inds = mask_matrix_nms(
                masks=masks, labels=labels, scores=scores,
                filter_thr=-1, nms_pre=-1, max_num=100,
                kernel='gaussian', sigma=2.0, mask_area=None,
            )

            # sort by score and keep topk
            num_pred = len(scores)
            if num_pred > self.topk:
                _, topk_indices = scores.topk(self.topk, sorted=False)
                scores = scores[topk_indices]
                masks = masks[topk_indices]
                labels = labels[topk_indices]

        image_size = (height, width)
        result = Instances(image_size)
        result.pred_masks = masks.float()
        result.scores = scores
        # Uncomment the following to get boxes from masks (this is slow)
        # result.pred_boxes = BitMasks(mask_pred > 0).get_bounding_boxes()
        result.pred_boxes = Boxes(torch.zeros(masks.shape[0], 4))
        result.pred_classes = labels

        output = {'instances': result}
        return output


if __name__ == '__main__':
    args = get_args_parser()
    dataset_name = 'coco_2017_val'
chenych's avatar
chenych committed
361
    coco_annotation = "{}/coco/annotations/instances_val2017.json".format(args.data_dir)
chenych's avatar
chenych committed
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415

    pred_dir = args.pred_dir
    output_folder = os.path.join(pred_dir, 'eval_{}'.format(dataset_name))

    # get palette
    PALETTE_DICT = define_colors_per_location_r_gb()

    evaluator = COCOEvaluatorCustom(
        dataset_name,
        tasks=("segm", ),
        output_dir=output_folder,
        palette_dict=PALETTE_DICT,
        pred_dir=pred_dir,
        num_windows=args.num_windows,
        post_type=args.post_type,
        dist_thr=args.dist_thr,
    )

    cocoGt = COCO(annotation_file=coco_annotation)
    id2img = cocoGt.imgs
    img2id = {v['file_name']: k for k, v in id2img.items()}

    inputs = []
    outputs = []
    prediction_list = glob.glob(os.path.join(pred_dir, "*.png"))
    print("num_pred: ", len(prediction_list))
    print("loading predictions")
    for file_name in prediction_list:
        # keys in input: "image_id",
        # keys in output: "instances", which contains pred_boxes, scores, pred_classes, pred_masks
        image_org_name = os.path.basename(file_name).split("_")[0]
        image_org_name = image_org_name.replace(".png", ".jpg") if image_org_name.endswith(".png") \
            else image_org_name + ".jpg"  # else for gt eval
        image_id = img2id[image_org_name]
        input_dict = {"image_id": image_id}
        output_dict = {"pred_path": file_name}
        inputs.append(input_dict)
        outputs.append(output_dict)

    evaluator.reset()
    evaluator.process(inputs, outputs)
    evaluator.evaluate()

    # load result file and eval using cocoapi
    resFile = evaluator.file_path
    cocoDt = cocoGt.loadRes(resFile)

    cocoEval = COCOeval(cocoGt, cocoDt, iouType="segm")
    cocoEval.params.useCats = 0
    cocoEval.evaluate()
    cocoEval.accumulate()
    cocoEval.summarize()

    results = cocoEval.stats