main_train.py 17.9 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
# --------------------------------------------------------
# Images Speak in Images: A Generalist Painter for In-Context Visual Learning (https://arxiv.org/abs/2212.02499)
# Github source: https://github.com/baaivision/Painter
# Copyright (c) 2022 Beijing Academy of Artificial Intelligence (BAAI)
# Licensed under The MIT License [see LICENSE for details]
# By Xinlong Wang, Wen Wang
# Based on MAE, BEiT, detectron2, Mask2Former, bts, mmcv, mmdetetection, mmpose, MIRNet, MPRNet, and Uformer codebases
# --------------------------------------------------------'

import argparse
import datetime
import json
import numpy as np
import os
import time
from pathlib import Path

import torch
import torch.backends.cudnn as cudnn
from torch.utils.tensorboard import SummaryWriter

import timm

assert timm.__version__ == "0.3.2"  # version check

import util.lr_decay as lrd
import util.misc as misc
from util.misc import get_parameter_groups
from util.misc import NativeScalerWithGradNormCount as NativeScaler
from util.pos_embed import interpolate_pos_embed

import models_painter

from engine_train import train_one_epoch, evaluate_pt

from data.pairdataset import PairDataset
import data.pair_transforms as pair_transforms
from util.masking_generator import MaskingGenerator
from data.sampler import DistributedSamplerWrapper

try:
    import wandb
    has_wandb = True
except ImportError:
    has_wandb = False


def get_args_parser():
    parser = argparse.ArgumentParser('Painter pre-training', add_help=False)
    parser.add_argument('--batch_size', default=2, type=int,
                        help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus')
    parser.add_argument('--epochs', default=15, type=int)
    parser.add_argument('--accum_iter', default=16, type=int,
                        help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)')

    # Model parameters
    parser.add_argument('--model', default='painter_vit_large_patch16_input896x448_win_dec64_8glb_sl1', type=str, metavar='MODEL',
                        help='Name of model to train')

    parser.add_argument('--input_size', default=224, type=int, nargs='+',
                        help='images input size')

    parser.add_argument('--mask_ratio', default=0.5, type=float,
                        help='Masking ratio (percentage of removed patches).')

    parser.add_argument('--norm_pix_loss', action='store_true',
                        help='Use (per-patch) normalized pixels as targets for computing loss')
    parser.set_defaults(norm_pix_loss=False)
    parser.add_argument('--num_mask_patches', default=784, type=int,
                        help='number of the visual tokens/patches need be masked')
    parser.add_argument('--max_mask_patches_per_block', type=int, default=None)
    parser.add_argument('--min_mask_patches_per_block', type=int, default=16)
    parser.add_argument('--stop_grad_patch_embed', action='store_true',
                        help='stop-grad after first conv, or patch embedding')
    parser.set_defaults(stop_grad_patch_embed=False)
    parser.add_argument('--finetune', default='',
                        help='finetune from checkpoint')
    parser.add_argument('--drop_path', default=0., type=float,
                        help='Drop path rate (default: 0.)')
    parser.add_argument('--min_random_scale', default=0.3, type=float,
                        help='Minimal random scale for randomresizecrop (default: 0.3)')
    parser.add_argument('--last_norm_instance', action='store_true', default=False,
                    help='use instance norm to normalize each channel map before the decoder layer')
    parser.add_argument('--half_mask_ratio', default=0.1, type=float,
                        help='ratio of using half mask during training (default: 0.1)')
    parser.add_argument('--use_checkpoint', action='store_true', default=False,
                    help='use checkpoint to save GPU memory')


    # Optimizer parameters
    parser.add_argument('--weight_decay', type=float, default=0.1,
                        help='weight decay (default: 0.1)')

    parser.add_argument('--lr', type=float, default=None, metavar='LR',
                        help='learning rate (absolute lr)')
    parser.add_argument('--blr', type=float, default=1e-3, metavar='LR',
                        help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
    parser.add_argument('--min_lr', type=float, default=0., metavar='LR',
                        help='lower lr bound for cyclic schedulers that hit 0')

    parser.add_argument('--warmup_epochs', type=int, default=40, metavar='N',
                        help='epochs to warmup LR')
    parser.add_argument('--save_freq', type=int, default=100,
                        help='save checkkpoints frequency')
    parser.add_argument('--clip_grad', type=float, default=3.0, metavar='NORM',
                        help='Clip gradient norm (default: None, no clipping)')
    parser.add_argument('--opt_eps', default=1e-8, type=float, metavar='EPSILON',
                        help='Optimizer Epsilon (default: 1e-8)')
    parser.add_argument('--opt_betas', default=[0.9, 0.999], type=float, nargs='+', metavar='BETA',
                        help='Optimizer Betas (default: None, use opt default)')
    parser.add_argument('--layer_decay', type=float, default=1.0, metavar='LRD',
                        help='Learning rate layer decay')

    # Dataset parameters
    parser.add_argument('--data_path', default='/datasets01/imagenet_full_size/061417/', type=str,
                        help='dataset path')
    #parser.add_argument('--json_path', default='./', type=str,
    parser.add_argument('--json_path', default='./', nargs='+', type=str,
                        help='json path')
    parser.add_argument('--val_json_path', default='./', nargs='+',type=str,
                        help='json path')

    parser.add_argument('--output_dir', default='./output_dir',
                        help='path where to save, empty for no saving')
    parser.add_argument('--log_dir', default='./output_dir',
                        help='path where to tensorboard log')
    parser.add_argument('--device', default='cuda',
                        help='device to use for training / testing')
    parser.add_argument('--seed', default=0, type=int)
    parser.add_argument('--resume', default='',
                        help='resume from checkpoint')
    parser.add_argument('--auto_resume', action='store_true')
    parser.set_defaults(auto_resume=False)

    parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
                        help='start epoch')
    parser.add_argument('--num_workers', default=10, type=int)
    parser.add_argument('--pin_mem', action='store_true',
                        help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
    parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem')
    parser.set_defaults(pin_mem=True)
    parser.add_argument('--use_two_pairs', action='store_true',
                        help='concatenate two pairs of images')
    parser.set_defaults(use_two_pairs=True)

    # distributed training parameters
    parser.add_argument('--world_size', default=1, type=int,
                        help='number of distributed processes')
    parser.add_argument('--local_rank', default=-1, type=int)
    parser.add_argument('--dist_on_itp', action='store_true')
    parser.add_argument('--dist_url', default='env://',
                        help='url used to set up distributed training')
    parser.add_argument('--enable_deepspeed',
                        action='store_true', default=False)
    parser.add_argument('--zero_stage', default=0, type=int,
                        help='ZeRO optimizer stage (default: 0)')
	# misc
    parser.add_argument('--log_wandb', action='store_true', default=False,
                    help='log training and validation metrics to wandb')

    known_args, _ = parser.parse_known_args()

    if known_args.enable_deepspeed:
        try:
            import deepspeed
            from deepspeed import DeepSpeedConfig
            parser = deepspeed.add_config_arguments(parser)
            ds_init = deepspeed.initialize
        except:
            print("Please 'pip install deepspeed==0.4.0'")
            exit(0)
    else:
        ds_init = None

    return parser.parse_args(), ds_init


def main(args, ds_init):
    misc.init_distributed_mode(args)

    if ds_init is not None:
        misc.create_ds_config(args)

    print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__))))
    print("{}".format(args).replace(', ', ',\n'))

    device = torch.device(args.device)

    # fix the seed for reproducibility
    seed = args.seed + misc.get_rank()
    torch.manual_seed(seed)
    np.random.seed(seed)

    cudnn.benchmark = True

    # define the model
    model = models_painter.__dict__[args.model]()

    if args.finetune:
        checkpoint = torch.load(args.finetune, map_location='cpu')

        print("Load pre-trained checkpoint from: %s" % args.finetune)
        checkpoint_model = checkpoint['model']
        state_dict = model.state_dict()
        rm_key_list = ['decoder_embed.weight', 'decoder_embed.bias',  'mask_token']
        if args.last_norm_instance:
            rm_key_list.extend(['norm.weight', 'norm.bias'])
        for k in rm_key_list:
            if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape:
                print(f"Removing key {k} from pretrained checkpoint")
                del checkpoint_model[k]
        # interpolate patch embedding
        if "patch32" in args.model:
            patch_weight = checkpoint['model']['patch_embed.proj.weight']
            new_patch_weight = torch.nn.functional.interpolate(patch_weight, size=(32, 32), mode='bicubic', align_corners=False)
            checkpoint['model']['patch_embed.proj.weight'] = new_patch_weight

        # interpolate position embedding
        if "painter" not in args.model:
            interpolate_pos_embed(model, checkpoint_model)

        # load pre-trained model
        msg = model.load_state_dict(checkpoint_model, strict=False)
        print(msg)

    patch_size = model.patch_size
    print("Patch size = %s" % str(patch_size))
    args.window_size = (args.input_size[0] // patch_size, args.input_size[1] // patch_size)
    args.patch_size = patch_size

    # simple augmentation
    transform_train = pair_transforms.Compose([
            pair_transforms.RandomResizedCrop(args.input_size[1], scale=(args.min_random_scale, 1.0), interpolation=3),  # 3 is bicubic
            pair_transforms.RandomApply([
                pair_transforms.ColorJitter(0.4, 0.4, 0.2, 0.1)
            ], p=0.8),
            pair_transforms.RandomHorizontalFlip(),
            pair_transforms.ToTensor(),
            pair_transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
    transform_train2 = pair_transforms.Compose([
            pair_transforms.RandomResizedCrop(args.input_size[1], scale=(0.9999, 1.0), interpolation=3),  # 3 is bicubic
            pair_transforms.ToTensor(),
            pair_transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
    transform_train3 = pair_transforms.Compose([
            pair_transforms.RandomResizedCrop(args.input_size[1], scale=(0.9999, 1.0), interpolation=3),  # 3 is bicubic
            pair_transforms.ToTensor(),
            pair_transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
    transform_train_seccrop = pair_transforms.Compose([
            pair_transforms.RandomResizedCrop(args.input_size, scale=(args.min_random_scale, 1.0), ratio=(0.3, 0.7), interpolation=3),  # 3 is bicubic
            ])
    transform_val = pair_transforms.Compose([
            pair_transforms.RandomResizedCrop(args.input_size[1], scale=(0.9999, 1.0), interpolation=3),  # 3 is bicubic
            pair_transforms.ToTensor(),
            pair_transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])

    masked_position_generator = MaskingGenerator(
        args.window_size, num_masking_patches=args.num_mask_patches,
        max_num_patches=args.max_mask_patches_per_block,
        min_num_patches=args.min_mask_patches_per_block,
    )
    dataset_train = PairDataset(args.data_path, args.json_path, transform=transform_train, transform2=transform_train2, transform3=transform_train3, transform_seccrop=transform_train_seccrop, masked_position_generator=masked_position_generator, use_two_pairs=args.use_two_pairs, half_mask_ratio=args.half_mask_ratio)
    dataset_val = PairDataset(args.data_path, args.val_json_path, transform=transform_val, transform2=None, transform3=None, masked_position_generator=masked_position_generator, use_two_pairs=args.use_two_pairs, half_mask_ratio=1.0)
    print(dataset_train)
    print(dataset_val)

    if True:  # args.distributed:
        num_tasks = misc.get_world_size()
        global_rank = misc.get_rank()
        num_samples_train = len(dataset_train)
        weights_train = dataset_train.weights
        sampler_train = torch.utils.data.WeightedRandomSampler(weights_train, num_samples_train, replacement=True)
        sampler_train = DistributedSamplerWrapper(sampler_train, num_replicas=num_tasks, rank=global_rank, shuffle=True)

        print("Sampler_train = %s" % str(sampler_train))
        sampler_val = torch.utils.data.DistributedSampler(
            dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=False)
    else:
        sampler_train = torch.utils.data.RandomSampler(dataset_train)

    if global_rank == 0 and args.log_dir is not None:
        os.makedirs(args.log_dir, exist_ok=True)
        log_writer = SummaryWriter(log_dir=args.log_dir)
    else:
        log_writer = None

    if global_rank == 0 and args.log_wandb:
        experiment = args.log_dir.split('/')[-2]
        if args.resume == '':
            wandb.init(project="Painter", name=experiment, config=args)
        else:
            wandb.init(project="Painter", name=experiment, config=args, resume=True)

    data_loader_train = torch.utils.data.DataLoader(
        dataset_train, sampler=sampler_train,
        batch_size=args.batch_size,
        num_workers=args.num_workers,
        pin_memory=args.pin_mem,
        drop_last=True,
    )

    data_loader_val = torch.utils.data.DataLoader(
        dataset_val, sampler=sampler_val,
        batch_size=int(1.5 * args.batch_size),
        num_workers=args.num_workers,
        pin_memory=args.pin_mem,
        drop_last=False,
        )
    

    model.to(device)
    model_without_ddp = model
    print("Model = %s" % str(model_without_ddp))

    eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size()
    
    if args.lr is None:  # only base_lr is specified
        args.lr = args.blr * eff_batch_size / 256

    print("base lr: %.2e" % (args.lr * 256 / eff_batch_size))
    print("actual lr: %.2e" % args.lr)

    print("accumulate grad iterations: %d" % args.accum_iter)
    print("effective batch size: %d" % eff_batch_size)

    if args.enable_deepspeed:
        loss_scaler = None
        optimizer_params = get_parameter_groups(
            model, args.weight_decay, model.no_weight_decay()
        )
        model, optimizer, _, _ = ds_init(
            args=args, model=model, model_parameters=optimizer_params,
            dist_init_required=not args.distributed,
        )

        print("model.gradient_accumulation_steps() = %d" %
              model.gradient_accumulation_steps())
        assert model.gradient_accumulation_steps() == args.accum_iter
    else:
        if args.distributed:
            model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
            model_without_ddp = model.module

        # following timm: set wd as 0 for bias and norm layers
        param_groups = lrd.param_groups_lrd(model_without_ddp, args.weight_decay,
            no_weight_decay_list=model_without_ddp.no_weight_decay(),
            layer_decay=args.layer_decay
        )
        optimizer = torch.optim.AdamW(param_groups, lr=args.lr, betas=args.opt_betas)
        print(optimizer)
        loss_scaler = NativeScaler()

    misc.auto_load_model(
        args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler)

    print(f"Start training for {args.epochs} epochs")
    start_time = time.time()
    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            data_loader_train.sampler.set_epoch(epoch)
        train_stats = train_one_epoch(
            model, data_loader_train,
            optimizer, device, epoch, loss_scaler,
            log_writer=log_writer,
            global_rank=global_rank,
            args=args
        )
        if args.output_dir and (epoch % args.save_freq == 0 or epoch + 1 == args.epochs):
            misc.save_model(
                args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
                loss_scaler=loss_scaler, epoch=epoch)

        test_stats = evaluate_pt(data_loader_val, model, device, epoch=epoch, global_rank=global_rank, args=args)
        print(f"Val loss of the network on the {len(dataset_val)} test images: {test_stats['loss']:.3f}")

        log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
                        **{f'test_{k}': v for k, v in test_stats.items()},
                        'epoch': epoch,}

        if args.output_dir and misc.is_main_process():
            if log_writer is not None:
                log_writer.flush()
            with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
                f.write(json.dumps(log_stats) + "\n")

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str))

    if global_rank == 0 and args.log_wandb:
        wandb.finish()


if __name__ == '__main__':
    args, ds_init = get_args_parser()
    if args.output_dir:
        Path(args.output_dir).mkdir(parents=True, exist_ok=True)
    main(args, ds_init)