engine_train.py 8.59 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# --------------------------------------------------------
# Images Speak in Images: A Generalist Painter for In-Context Visual Learning (https://arxiv.org/abs/2212.02499)
# Github source: https://github.com/baaivision/Painter
# Copyright (c) 2022 Beijing Academy of Artificial Intelligence (BAAI)
# Licensed under The MIT License [see LICENSE for details]
# By Xinlong Wang, Wen Wang
# Based on MAE, BEiT, detectron2, Mask2Former, bts, mmcv, mmdetetection, mmpose, MIRNet, MPRNet, and Uformer codebases
# --------------------------------------------------------'

import math
import sys
from typing import Iterable

import torch

import util.misc as misc
import util.lr_sched as lr_sched

import numpy as np
import wandb


def get_loss_scale_for_deepspeed(model):
    optimizer = model.optimizer
    loss_scale = None
    if hasattr(optimizer, 'loss_scale'):
        loss_scale = optimizer.loss_scale
    elif hasattr(optimizer, 'cur_scale'):
        loss_scale = optimizer.cur_scale
    return loss_scale, optimizer._global_grad_norm
    # return optimizer.loss_scale if hasattr(optimizer, "loss_scale") else optimizer.cur_scale


def train_one_epoch(model: torch.nn.Module,
                    data_loader: Iterable, optimizer: torch.optim.Optimizer,
                    device: torch.device, epoch: int, loss_scaler,
                    log_writer=None,
                    global_rank=None,
                    args=None):
    model.train(True)
    metric_logger = misc.MetricLogger(delimiter="  ")
    metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}'))
    header = 'Epoch: [{}]'.format(epoch)
    print_freq = 20

    accum_iter = args.accum_iter

    optimizer.zero_grad()

    if log_writer is not None:
        print('log_dir: {}'.format(log_writer.log_dir))

    wandb_images = []
    for data_iter_step, (samples, targets, bool_masked_pos, valid) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):

        # we use a per iteration (instead of per epoch) lr scheduler
        if data_iter_step % accum_iter == 0:
            lr_sched.adjust_learning_rate(optimizer, data_iter_step / len(data_loader) + epoch, args)

        samples = samples.to(device, non_blocking=True)
        targets = targets.to(device, non_blocking=True)
        bool_masked_pos = bool_masked_pos.to(device, non_blocking=True)
        valid = valid.to(device, non_blocking=True)

        with torch.cuda.amp.autocast():
            loss, y, mask = model(samples, targets, bool_masked_pos=bool_masked_pos, valid=valid)

        loss_value = loss.item()

        if not math.isfinite(loss_value):
            print("Loss is {}, stopping training".format(loss_value))
            sys.exit(1)

        if loss_scaler is None:
            loss /= accum_iter
            model.backward(loss)
            model.step()

            # if (data_iter_step + 1) % update_freq == 0:
                # model.zero_grad()
                # Deepspeed will call step() & model.zero_grad() automatic
            # grad_norm = None
            loss_scale_value, grad_norm = get_loss_scale_for_deepspeed(model)
        else:
            loss /= accum_iter
            grad_norm = loss_scaler(loss, optimizer, clip_grad=args.clip_grad,
                                    parameters=model.parameters(),
                                    update_grad=(data_iter_step + 1) % accum_iter == 0)
            if (data_iter_step + 1) % accum_iter == 0:
                optimizer.zero_grad()
            loss_scale_value = loss_scaler.state_dict()["scale"]

        torch.cuda.synchronize()

        metric_logger.update(loss=loss_value)

        lr = optimizer.param_groups[0]["lr"]
        metric_logger.update(lr=lr)

        metric_logger.update(loss_scale=loss_scale_value)
        metric_logger.update(grad_norm=grad_norm)

        loss_value_reduce = misc.all_reduce_mean(loss_value)
        if log_writer is not None and (data_iter_step + 1) % accum_iter == 0:
            """ We use epoch_1000x as the x-axis in tensorboard.
            This calibrates different curves when batch size changes.
            """
            epoch_1000x = int((data_iter_step / len(data_loader) + epoch) * 1000)
            log_writer.add_scalar('train_loss', loss_value_reduce, epoch_1000x)
            log_writer.add_scalar('lr', lr, epoch_1000x)

            if global_rank == 0 and args.log_wandb:
                wandb.log({'train_loss': loss_value_reduce, 'lr': lr, 'train_loss_scale': loss_scale_value, 'grad_norm': grad_norm})
                if len(wandb_images) < 20:
                    imagenet_mean = np.array([0.485, 0.456, 0.406])
                    imagenet_std = np.array([0.229, 0.224, 0.225]) 
                    y = y[[0]]
                    y = model.module.unpatchify(y)
                    y = torch.einsum('nchw->nhwc', y).detach().cpu()
                    mask = mask[[0]]
                    mask = mask.detach().float().cpu()
                    mask = mask.unsqueeze(-1).repeat(1, 1, model.module.patch_size**2 *3)  # (N, H*W, p*p*3)
                    mask = model.module.unpatchify(mask)  # 1 is removing, 0 is keeping
                    mask = torch.einsum('nchw->nhwc', mask).detach().cpu()
                    x = samples[[0]]
                    x = x.detach().float().cpu()
                    x = torch.einsum('nchw->nhwc', x)
                    tgt = targets[[0]]
                    tgt = tgt.detach().float().cpu()
                    tgt = torch.einsum('nchw->nhwc', tgt)
                    im_masked = tgt * (1 - mask)
                    
                    frame = torch.cat((x, im_masked, y, tgt), dim=2)
                    frame = frame[0]
                    frame = torch.clip((frame * imagenet_std + imagenet_mean) * 255, 0, 255).int()
                    wandb_images.append(wandb.Image(frame.numpy(), caption="x; im_masked; y; tgt"))

    if global_rank == 0 and args.log_wandb and len(wandb_images) > 0:
        wandb.log({"Training examples": wandb_images})

    # gather the stats from all processes
    metric_logger.synchronize_between_processes()
    print("Averaged stats:", metric_logger)
    return {k: meter.global_avg for k, meter in metric_logger.meters.items()}


@torch.no_grad()
def evaluate_pt(data_loader, model, device, epoch=None, global_rank=None, args=None):
    metric_logger = misc.MetricLogger(delimiter="  ")
    header = 'Test:'
    # switch to evaluation mode
    model.eval()
    wandb_images = []
    for batch in metric_logger.log_every(data_loader, 10, header):
        samples = batch[0]
        targets = batch[1]
        bool_masked_pos = batch[2]
        valid = batch[3]
        samples = samples.to(device, non_blocking=True)
        targets = targets.to(device, non_blocking=True)
        bool_masked_pos = bool_masked_pos.to(device, non_blocking=True)
        valid = valid.to(device, non_blocking=True)

        # compute output
        with torch.cuda.amp.autocast():
            loss, y, mask = model(samples, targets, bool_masked_pos=bool_masked_pos, valid=valid)

        metric_logger.update(loss=loss.item())
        if global_rank == 0 and args.log_wandb:
            imagenet_mean = np.array([0.485, 0.456, 0.406])
            imagenet_std = np.array([0.229, 0.224, 0.225]) 
            y = y[[0]]
            y = model.module.unpatchify(y)
            y = torch.einsum('nchw->nhwc', y).detach().cpu()
            mask = mask[[0]]
            mask = mask.detach().float().cpu()
            mask = mask.unsqueeze(-1).repeat(1, 1, model.module.patch_size**2 *3)  # (N, H*W, p*p*3)
            mask = model.module.unpatchify(mask)  # 1 is removing, 0 is keeping
            mask = torch.einsum('nchw->nhwc', mask).detach().cpu()
            x = samples[[0]]
            x = x.detach().float().cpu()
            x = torch.einsum('nchw->nhwc', x)
            tgt = targets[[0]]
            tgt = tgt.detach().float().cpu()
            tgt = torch.einsum('nchw->nhwc', tgt)
            im_masked = tgt * (1 - mask)
            
            frame = torch.cat((x, im_masked, y, tgt), dim=2)
            frame = frame[0]
            frame = torch.clip((frame * imagenet_std + imagenet_mean) * 255, 0, 255).int()
            wandb_images.append(wandb.Image(frame.numpy(), caption="x; im_masked; y; tgt"))

    # gather the stats from all processes
    metric_logger.synchronize_between_processes()
    print('Val loss {losses.global_avg:.3f}'.format(losses=metric_logger.loss))

    out = {k: meter.global_avg for k, meter in metric_logger.meters.items()}

    if global_rank == 0 and args.log_wandb:
        wandb.log({**{f'test_{k}': v for k, v in out.items()},'epoch': epoch})
        if len(wandb_images) > 0:
            wandb.log({"Testing examples": wandb_images[::2][:20]})
    return out