pairdataset.py 8.87 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# --------------------------------------------------------
# Images Speak in Images: A Generalist Painter for In-Context Visual Learning (https://arxiv.org/abs/2212.02499)
# Github source: https://github.com/baaivision/Painter
# Copyright (c) 2022 Beijing Academy of Artificial Intelligence (BAAI)
# Licensed under The MIT License [see LICENSE for details]
# By Xinlong Wang, Wen Wang
# Based on MAE, BEiT, detectron2, Mask2Former, bts, mmcv, mmdetetection, mmpose, MIRNet, MPRNet, and Uformer codebases
# --------------------------------------------------------'

import os.path
import json
from typing import Any, Callable, List, Optional, Tuple
import random

from PIL import Image
import numpy as np

import torch
from torchvision.datasets.vision import VisionDataset, StandardTransform


class PairDataset(VisionDataset):
    """`MS Coco Detection <https://cocodataset.org/#detection-2016>`_ Dataset.

    It requires the `COCO API to be installed <https://github.com/pdollar/coco/tree/master/PythonAPI>`_.

    Args:
        root (string): Root directory where images are downloaded to.
        annFile (string): Path to json annotation file.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.PILToTensor``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
        transforms (callable, optional): A function/transform that takes input sample and its target as entry
            and returns a transformed version.
    """

    def __init__(
        self,
        root: str,
        json_path_list: list,
        transform: Optional[Callable] = None,
        transform2: Optional[Callable] = None,
        transform3: Optional[Callable] = None,
        transform_seccrop: Optional[Callable] = None,
        target_transform: Optional[Callable] = None,
        transforms: Optional[Callable] = None,
        masked_position_generator: Optional[Callable] = None,
        use_two_pairs: bool = True,
        half_mask_ratio:float = 0.,
    ) -> None:
        super().__init__(root, transforms, transform, target_transform)

        self.pairs = []
        self.weights = []
        type_weight_list = [0.1, 0.2, 0.15, 0.25, 0.2, 0.15, 0.05, 0.05]
        for idx, json_path in enumerate(json_path_list):
            cur_pairs = json.load(open(json_path))
            self.pairs.extend(cur_pairs)
            cur_num = len(cur_pairs)
            self.weights.extend([type_weight_list[idx] * 1./cur_num]*cur_num)
            print(json_path, type_weight_list[idx])
        self.use_two_pairs = use_two_pairs
        if self.use_two_pairs:
            self.pair_type_dict = {}
            for idx, pair in enumerate(self.pairs):
                if "type" in pair:
                    if pair["type"] not in self.pair_type_dict:
                        self.pair_type_dict[pair["type"]] = [idx]
                    else:
                        self.pair_type_dict[pair["type"]].append(idx)
            for t in self.pair_type_dict:
                print(t, len(self.pair_type_dict[t]))
        self.transforms = PairStandardTransform(transform, target_transform) if transform is not None else None
        self.transforms2 = PairStandardTransform(transform2, target_transform) if transform2 is not None else None
        self.transforms3 = PairStandardTransform(transform3, target_transform) if transform3 is not None else None
        self.transforms_seccrop = PairStandardTransform(transform_seccrop, target_transform) if transform_seccrop is not None else None
        self.masked_position_generator = masked_position_generator
        self.half_mask_ratio = half_mask_ratio

    def _load_image(self, path: str) -> Image.Image:
        while True:
            try:
                img = Image.open(os.path.join(self.root, path))
            except OSError as e:
                print(f"Catched exception: {str(e)}. Re-trying...")
                import time
                time.sleep(1)
            else:
                break
        # process for nyuv2 depth: scale to 0~255
        if "sync_depth" in path:
            # nyuv2's depth range is 0~10m
            img = np.array(img) / 10000.
            img = img * 255
            img = Image.fromarray(img)
        img = img.convert("RGB")
        return img

    def _combine_images(self, image, image2, interpolation='bicubic'):
        # image under image2
        h, w = image.shape[1], image.shape[2]
        dst = torch.cat([image, image2], dim=1)
        return dst

    def __getitem__(self, index: int) -> Tuple[Any, Any]:
        pair = self.pairs[index]
        image = self._load_image(pair['image_path'])
        target = self._load_image(pair['target_path'])

        # decide mode for interpolation
        pair_type = pair['type']
        if "depth" in pair_type or "pose" in pair_type:
            interpolation1 = 'bicubic'
            interpolation2 = 'bicubic'
        elif "image2" in pair_type:
            interpolation1 = 'bicubic'
            interpolation2 = 'nearest'
        elif "2image" in pair_type:
            interpolation1 = 'nearest'
            interpolation2 = 'bicubic'
        else:
            interpolation1 = 'bicubic'
            interpolation2 = 'bicubic'
            
        # no aug for instance segmentation
        if "inst" in pair['type'] and self.transforms2 is not None:
            cur_transforms = self.transforms2
        elif "pose" in pair['type'] and self.transforms3 is not None:
            cur_transforms = self.transforms3
        else:
            cur_transforms = self.transforms

        image, target = cur_transforms(image, target, interpolation1, interpolation2)

        if self.use_two_pairs:
            pair_type = pair['type']
            # sample the second pair belonging to the same type
            pair2_index = random.choice(self.pair_type_dict[pair_type])
            pair2 = self.pairs[pair2_index]
            image2 = self._load_image(pair2['image_path'])
            target2 = self._load_image(pair2['target_path'])
            assert pair2['type'] == pair_type
            image2, target2 = cur_transforms(image2, target2, interpolation1, interpolation2)
            image = self._combine_images(image, image2, interpolation1)
            target = self._combine_images(target, target2, interpolation2)

        use_half_mask = torch.rand(1)[0] < self.half_mask_ratio
        if (self.transforms_seccrop is None) or ("inst" in pair['type']) or ("pose" in pair['type']) or use_half_mask:
            pass
        else:
            image, target = self.transforms_seccrop(image, target, interpolation1, interpolation2)
        
        valid = torch.ones_like(target)
        imagenet_mean=torch.tensor([0.485, 0.456, 0.406])
        imagenet_std=torch.tensor([0.229, 0.224, 0.225])
        if "nyuv2_image2depth" in pair_type:
            thres = torch.ones(3) * (1e-3 * 0.1)
            thres = (thres - imagenet_mean) / imagenet_std
            valid[target < thres[:, None, None]] = 0
        elif "ade20k_image2semantic" in pair_type:
            thres = torch.ones(3) * (1e-5) # ignore black
            thres = (thres - imagenet_mean) / imagenet_std
            valid[target < thres[:, None, None]] = 0
        elif "coco_image2panoptic_sem_seg" in pair_type:
            thres = torch.ones(3) * (1e-5) # ignore black
            thres = (thres - imagenet_mean) / imagenet_std
            valid[target < thres[:, None, None]] = 0
        elif "image2pose" in pair_type:
            thres = torch.ones(3) * (1e-5) # ignore black
            thres = (thres - imagenet_mean) / imagenet_std
            valid[target > thres[:, None, None]] = 10.0
            fg = target > thres[:, None, None]
            if fg.sum() < 100*3:
                valid = valid * 0.
        elif "image2panoptic_inst" in pair_type:
            thres = torch.ones(3) * (1e-5) # ignore black
            thres = (thres - imagenet_mean) / imagenet_std
            fg = target > thres[:, None, None]
            if fg.sum() < 100*3:
                valid = valid * 0.

        if use_half_mask:
            num_patches = self.masked_position_generator.num_patches
            mask = np.zeros(self.masked_position_generator.get_shape(), dtype=np.int32)
            mask[mask.shape[0]//2:, :] = 1
        else:
            mask = self.masked_position_generator()
        
        return image, target, mask, valid

    def __len__(self) -> int:
        return len(self.pairs)


class PairStandardTransform(StandardTransform):
    def __init__(self, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None) -> None:
        super().__init__(transform=transform, target_transform=target_transform)

    def __call__(self, input: Any, target: Any, interpolation1: Any, interpolation2: Any) -> Tuple[Any, Any]:
        if self.transform is not None:
            input, target = self.transform(input, target, interpolation1, interpolation2)
        return input, target