painter_inference_pose.py 6.11 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# --------------------------------------------------------
# Images Speak in Images: A Generalist Painter for In-Context Visual Learning (https://arxiv.org/abs/2212.02499)
# Github source: https://github.com/baaivision/Painter
# Copyright (c) 2022 Beijing Academy of Artificial Intelligence (BAAI)
# Licensed under The MIT License [see LICENSE for details]
# By Xinlong Wang, Wen Wang
# Based on MAE, BEiT, detectron2, Mask2Former, bts, mmcv, mmdetetection, mmpose, MIRNet, MPRNet, and Uformer codebases
# --------------------------------------------------------'

import sys
import os
import warnings

import requests
import argparse

import torch
import torch.nn.functional as F
import numpy as np
import glob
import tqdm

import matplotlib.pyplot as plt
from PIL import Image
import torch.distributed as dist
from torch.utils.data import DataLoader, DistributedSampler

sys.path.append('.')
import models_painter
from util.ddp_utils import DatasetTest
from util import ddp_utils


imagenet_mean = np.array([0.485, 0.456, 0.406])
imagenet_std = np.array([0.229, 0.224, 0.225])


def get_args_parser():
    parser = argparse.ArgumentParser('COCO Pose Estimation', add_help=False)
    parser.add_argument('--ckpt_path', type=str, help='path to ckpt', default='')
    parser.add_argument('--model', type=str, help='dir to ckpt',
                        default='painter_vit_large_patch16_input896x448_win_dec64_8glb_sl1')
    parser.add_argument('--prompt', type=str, help='prompt image in train set',
                        default='000000000165_box0')
    parser.add_argument('--input_size', type=int, default=448)
    parser.add_argument('--flip_test', action='store_true', help='use offline bbox')

    # distributed training parameters
    parser.add_argument('--world_size', default=1, type=int,
                        help='number of distributed processes')
    parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
    return parser.parse_args()


def prepare_model(chkpt_dir, arch, args=None):
    # build model
    model = getattr(models_painter, arch)()
    model.to("cuda")
    model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
    model_without_ddp = model.module
    # load model
    checkpoint = torch.load(chkpt_dir, map_location='cpu')
    msg = model_without_ddp.load_state_dict(checkpoint['model'], strict=False)
    print(msg)
    return model


def run_one_image(img, tgt, size, model, out_path, device):
    x = torch.tensor(img)
    x = x.unsqueeze(dim=0)
    x = torch.einsum('nhwc->nchw', x)

    tgt = torch.tensor(tgt)
    tgt = tgt.unsqueeze(dim=0)
    tgt = torch.einsum('nhwc->nchw', tgt)

    bool_masked_pos = torch.zeros(model.module.patch_embed.num_patches)
    bool_masked_pos[model.module.patch_embed.num_patches//2:] = 1
    bool_masked_pos = bool_masked_pos.unsqueeze(dim=0)

    valid = torch.ones_like(tgt)
    loss, y, mask = model(x.float().to(device), tgt.float().to(device), bool_masked_pos.to(device), valid.float().to(device))
    y = model.module.unpatchify(y)
    y = torch.einsum('nchw->nhwc', y).detach().cpu()

    output = y[0, y.shape[1]//2:, :, :]
    output = torch.clip((output * imagenet_std + imagenet_mean) * 255, 0, 255)
    output = F.interpolate(output[None, ...].permute(0, 3, 1, 2), size=[size[1], size[0]], mode='nearest').permute(0, 2, 3, 1)[0]

    output = output.int()
    output = Image.fromarray(output.numpy().astype(np.uint8))
    output.save(out_path)


if __name__ == '__main__':
    dataset_dir = "datasets/"
    args = get_args_parser()
    args = ddp_utils.init_distributed_mode(args)
    device = torch.device("cuda")

    ckpt_path = args.ckpt_path
    model = args.model
    prompt = args.prompt
    input_size = args.input_size

    path_splits = ckpt_path.split('/')
    ckpt_dir, ckpt_file = path_splits[-2], path_splits[-1]
    dst_dir = os.path.join('models_inference', ckpt_dir.split('/')[-1],
                           "coco_pose_inference_{}_{}".format(ckpt_path, os.path.basename(prompt).split(".")[0]))
    if args.flip_test:
        dst_dir = dst_dir + "_flip"

    if ddp_utils.get_rank() == 0:
        if not os.path.exists(dst_dir):
            os.makedirs(dst_dir)
        print("output_dir: {}".format(dst_dir))

    model_painter = prepare_model(ckpt_path, model, args)
    print('Model loaded.')

    img_src_dir = dataset_dir + "coco_pose/data_pair/test_256x192"
    if args.flip_test:
        img_src_dir += "_flip"

    dataset_val = DatasetTest(img_src_dir, input_size, ext_list=('*.png',))

    sampler_val = DistributedSampler(dataset_val, shuffle=False)
    data_loader_val = DataLoader(dataset_val, batch_size=1, sampler=sampler_val,
                                 drop_last=False, collate_fn=ddp_utils.collate_fn, num_workers=2)

    img2_path = dataset_dir + "coco_pose/data_pair/train_256x192_aug0/{}_image.png".format(prompt)
    tgt2_path = dataset_dir + "coco_pose/data_pair/train_256x192_aug0/{}_label.png".format(prompt)

    # load the shared prompt image pair
    img2 = Image.open(img2_path).convert("RGB")
    img2 = img2.resize((input_size, input_size))
    img2 = np.array(img2) / 255.

    tgt2 = Image.open(tgt2_path)
    tgt2 = tgt2.resize((input_size, input_size))
    tgt2 = np.array(tgt2) / 255.

    model_painter.eval()
    for data in tqdm.tqdm(data_loader_val):
        """ Load an image """
        assert len(data) == 1
        img, img_path, size = data[0]
        img_name = os.path.basename(img_path)
        out_path = os.path.join(dst_dir, img_name.replace('.jpg', '.png'))

        img = np.concatenate((img2, img), axis=0)
        assert img.shape == (input_size * 2, input_size, 3)
        # normalize by ImageNet mean and std
        img = img - imagenet_mean
        img = img / imagenet_std

        tgt = tgt2  # tgt is not available
        tgt = np.concatenate((tgt2, tgt), axis=0)

        assert tgt.shape == (input_size * 2, input_size, 3)
        # normalize by ImageNet mean and std
        tgt = tgt - imagenet_mean
        tgt = tgt / imagenet_std

        # make random mask reproducible (comment out to make it change)
        torch.manual_seed(2)
        run_one_image(img, tgt, size, model_painter, out_path, device)