top_down.py 9.85 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# Copyright (c) OpenMMLab. All rights reserved.
import os
import warnings

import mmcv
import numpy as np
from PIL import Image
import torch
from mmcv.image import imwrite
from mmcv.utils.misc import deprecated_api_warning
from mmcv.visualization.image import imshow

from mmpose.core import imshow_bboxes, imshow_keypoints
from mmpose.models import builder
from mmpose.models.builder import POSENETS
# from .base import BasePose
from mmpose.models.detectors import TopDown

try:
    from mmcv.runner import auto_fp16
except ImportError:
    warnings.warn('auto_fp16 from mmpose will be deprecated from v0.15.0'
                  'Please install mmcv>=1.1.4')
    from mmpose.core import auto_fp16

from mmpose.core.post_processing import flip_back
from data.pipelines.custom_transform import define_colors_gb_mean_sep
color_dict = define_colors_gb_mean_sep()
color_list = [v for k, v in color_dict.items()]
color_list.append((0, 0))


@POSENETS.register_module()
class TopDownCustom(TopDown):
    """Top-down pose detectors.

    Args:
        backbone (dict): Backbone modules to extract feature.
        keypoint_head (dict): Keypoint head to process feature.
        train_cfg (dict): Config for training. Default: None.
        test_cfg (dict): Config for testing. Default: None.
        pretrained (str): Path to the pretrained models.
        loss_pose (None): Deprecated arguments. Please use
            `loss_keypoint` for heads instead.
    """
    colors = torch.tensor(color_list, dtype=torch.float32, device="cuda")

    def __init__(self,
                 backbone,
                 neck=None,
                 keypoint_head=None,
                 train_cfg=None,
                 test_cfg=None,
                 pretrained=None,
                 loss_pose=None):
        super().__init__(
            backbone=backbone,
            neck=neck,
            keypoint_head=keypoint_head,
            train_cfg=train_cfg,
            test_cfg=test_cfg,
            pretrained=pretrained,
            loss_pose=loss_pose)

    @auto_fp16(apply_to=('img', ))
    def forward(self,
                img,
                target=None,
                target_weight=None,
                img_metas=None,
                return_loss=True,
                return_heatmap=False,
                pseudo_test=False,
                **kwargs):
        """Calls either forward_train or forward_test depending on whether
        return_loss=True. Note this setting will change the expected inputs.
        When `return_loss=True`, img and img_meta are single-nested (i.e.
        Tensor and List[dict]), and when `resturn_loss=False`, img and img_meta
        should be double nested (i.e.  List[Tensor], List[List[dict]]), with
        the outer list indicating test time augmentations.

        Note:
            - batch_size: N
            - num_keypoints: K
            - num_img_channel: C (Default: 3)
            - img height: imgH
            - img width: imgW
            - heatmaps height: H
            - heatmaps weight: W

        Args:
            img (torch.Tensor[NxCximgHximgW]): Input images.
            target (torch.Tensor[NxKxHxW]): Target heatmaps.
            target_weight (torch.Tensor[NxKx1]): Weights across
                different joint types.
            img_metas (list(dict)): Information about data augmentation
                By default this includes:

                - "image_file: path to the image file
                - "center": center of the bbox
                - "scale": scale of the bbox
                - "rotation": rotation of the bbox
                - "bbox_score": score of bbox
            return_loss (bool): Option to `return loss`. `return loss=True`
                for training, `return loss=False` for validation & test.
            return_heatmap (bool) : Option to return heatmap.

        Returns:
            dict|tuple: if `return loss` is true, then return losses. \
                Otherwise, return predicted poses, boxes, image paths \
                and heatmaps.
        """
        if pseudo_test:
            return self.forward_pseudo_test(
            img, img_metas, return_heatmap=return_heatmap, **kwargs)
        if return_loss:
            return self.forward_train(img, target, target_weight, img_metas,
                                      **kwargs)
        return self.forward_test(
            img, img_metas, return_heatmap=return_heatmap, **kwargs)

    def forward_test(self, img, img_metas, return_heatmap=False, **kwargs):
        """Defines the computation performed at every call when testing."""
        assert img.size(0) == len(img_metas)
        batch_size, _, img_height, img_width = img.shape
        if batch_size > 1:
            assert 'bbox_id' in img_metas[0]

        result = {}

        features = self.backbone(img)
        if self.with_neck:
            features = self.neck(features)
        if self.with_keypoint:
            output_heatmap = self.keypoint_head.inference_model(
                features, flip_pairs=None)

        if self.test_cfg.get('flip_test', True):
            img_flipped = img.flip(3)  # (b, c, h, w)
            features_flipped = self.backbone(img_flipped)
            if self.with_neck:
                features_flipped = self.neck(features_flipped)
            if self.with_keypoint:
                output_flipped_heatmap = self.keypoint_head.inference_model(
                    features_flipped, img_metas[0]['flip_pairs'])
                output_heatmap = (output_heatmap + output_flipped_heatmap)
                if self.test_cfg.get('regression_flip_shift', False):
                    output_heatmap[..., 0] -= 1.0 / img_width
                output_heatmap = output_heatmap / 2

        if self.with_keypoint:
            keypoint_result = self.keypoint_head.decode(
                img_metas, output_heatmap, img_size=[img_width, img_height])
            result.update(keypoint_result)

            if not return_heatmap:
                output_heatmap = None

            result['output_heatmap'] = output_heatmap

        return result

    def forward_pseudo_test(self, img, img_metas, return_heatmap=False, **kwargs):
        """Defines the computation performed at every call when testing."""
        assert img.size(0) == len(img_metas)
        batch_size, _, img_height, img_width = img.shape
        if batch_size > 1:
            assert 'bbox_id' in img_metas[0]

        result = {}

        output_heatmap = self.decode_images_to_heatmaps_minmax(
            images=img, resize=False,
        )

        # add support for flip test
        if self.test_cfg.get('flip_test', True):
            image_flip_list = []
            for batch_idx in range(img.shape[0]):
                flip_image_dir = os.path.dirname(img_metas[batch_idx]['image_file']) + "_flip"
                flip_image_name = os.path.basename(img_metas[batch_idx]['image_file'])
                flip_image_path = os.path.join(flip_image_dir, flip_image_name)
                image = np.array(Image.open(flip_image_path))
                image_tensor = torch.from_numpy(image).to(img.device)
                image_flip_list.append(image_tensor)
            img_flipped = torch.stack(image_flip_list)  # (b, h, w, 3)
            if self.with_keypoint:
                # output_flipped_heatmap = self.keypoint_head.inference_model(
                #     features_flipped, img_metas[0]['flip_pairs'])
                output = self.decode_images_to_heatmaps_minmax(
                    images=img_flipped, resize=False,
                )
                flip_pairs = img_metas[0]['flip_pairs']
                assert flip_pairs is not None
                output_flipped_heatmap = flip_back(
                    output,
                    flip_pairs,
                    target_type=self.keypoint_head.target_type)
                # feature is not aligned, shift flipped heatmap for higher accuracy
                if self.test_cfg.get('shift_heatmap', False):
                    output_flipped_heatmap[:, :, :, 1:] = output_flipped_heatmap[:, :, :, :-1]
                output_heatmap = (output_heatmap + output_flipped_heatmap)
                if self.test_cfg.get('regression_flip_shift', False):
                    output_heatmap[..., 0] -= 1.0 / img_width
                output_heatmap = output_heatmap / 2

        if self.with_keypoint:
            keypoint_result = self.keypoint_head.decode(
                img_metas, output_heatmap, img_size=[img_width, img_height])
            result.update(keypoint_result)

            if not return_heatmap:
                output_heatmap = None

            result['output_heatmap'] = output_heatmap

        return result

    def decode_images_to_heatmaps_minmax(self, images, resize=False):
        """

        Args:
            images: (bs, 256, 192, 3)
            resize: whether to resize to (64, 48)

        Returns:
            heatmaps: (bs, 17, h, w)
        """
        assert images.shape[-1] == 3
        batch_size, image_height, image_width, _ = images.shape
        images = images.float()

        # classify each pixel using GB
        GB = images[..., 1:].view(batch_size, 1, image_height, image_width, 2)  # (bs, 1, 256, 192, 2)
        colors = TopDown.colors
        num_classes = colors.shape[0]
        colors = colors.view(1, -1, 1, 1, 2)
        dist = torch.abs(GB - colors).sum(-1)  # (bs, 18, 256, 192)
        dist, indices = torch.min(dist, dim=1)  # (bs, 256, 192)
        keypoint_mask_list = []
        for idx in range(num_classes):
            mask = indices == idx  # (bs, 256, 192)
            keypoint_mask_list.append(mask)

        R = images[..., 0]  # (bs, 256, 192)
        heatmap_list = []
        for idx in range(num_classes):
            if idx == 17:
                continue
            mask = keypoint_mask_list[idx]
            heatmap = mask * R
            heatmap_list.append(heatmap.unsqueeze(1))
        heatmaps = torch.cat(heatmap_list, dim=1)

        if resize:
            raise NotImplementedError

        return heatmaps.cpu().numpy() / 255.