vlmo_utils.py 13.3 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import torch
import random
import json

from transformers.optimization import AdamW
from transformers import (
    get_polynomial_decay_schedule_with_warmup,
    get_cosine_schedule_with_warmup,
)
from vlmo.modules.dist_utils import all_gather
from vlmo.modules.objectives import compute_irtr_recall, compute_irtr_recall_with_rerank
from vlmo.gadgets.my_metrics import Accuracy, VQAScore, Scalar
from pytorch_lightning.utilities.distributed import rank_zero_info


def set_metrics(pl_module):
    for split in ["train", "val"]:
        for k, v in pl_module.hparams.config["loss_names"].items():
            if v < 1:
                continue
            if k == "vqa":
                setattr(pl_module, f"{split}_vqa_score", VQAScore())
                setattr(pl_module, f"{split}_{k}_loss", Scalar())
            elif k == "nlvr2":
                if split == "train":
                    setattr(pl_module, f"train_{k}_accuracy", Accuracy())
                    setattr(pl_module, f"train_{k}_loss", Scalar())
                else:
                    setattr(pl_module, f"dev_{k}_accuracy", Accuracy())
                    setattr(pl_module, f"dev_{k}_loss", Scalar())
                    setattr(pl_module, f"test_{k}_accuracy", Accuracy())
                    setattr(pl_module, f"test_{k}_loss", Scalar())
            elif k == "irtr":
                setattr(pl_module, f"{split}_{k}_i2t_accuracy", Accuracy())
                setattr(pl_module, f"{split}_{k}_t2i_accuracy", Accuracy())
                setattr(pl_module, f"{split}_{k}_loss", Scalar())
                setattr(pl_module, f"{split}_{k}_logit_scale", Scalar())
            elif k == "itm":
                setattr(pl_module, f"{split}_{k}_accuracy", Accuracy())
                setattr(pl_module, f"{split}_{k}_loss", Scalar())
            elif k == "itc":
                setattr(pl_module, f"{split}_{k}_i2t_accuracy", Accuracy())
                setattr(pl_module, f"{split}_{k}_t2i_accuracy", Accuracy())
                setattr(pl_module, f"{split}_{k}_loss", Scalar())
                setattr(pl_module, f"{split}_{k}_logit_scale", Scalar())

                setattr(pl_module, f"{split}_{k}_vl_i2t_accuracy", Accuracy())
                setattr(pl_module, f"{split}_{k}_vl_t2i_accuracy", Accuracy())
                setattr(pl_module, f"{split}_{k}_vl_logit_scale", Scalar())
            else:
                setattr(pl_module, f"{split}_{k}_accuracy", Accuracy())
                setattr(pl_module, f"{split}_{k}_loss", Scalar())


def epoch_wrapup(pl_module):
    phase = "train" if pl_module.training else "val"
    the_metric = 0

    if pl_module.hparams.config["get_recall_metric"] and not pl_module.training:
        (val_ir_r1, val_ir_r5, val_ir_r10, val_tr_r1, val_tr_r5, val_tr_r10) = compute_irtr_recall(pl_module, split="val")
        val_avg = (val_ir_r1.item() + val_ir_r5.item() + val_ir_r10.item() + val_tr_r1.item() + val_tr_r5.item() + val_tr_r10.item()) / 6.0
        pl_module.logger.experiment.add_scalar(
            "recalls/val_avg", val_avg, pl_module.global_step
        )

        (ir_r1, ir_r5, ir_r10, tr_r1, tr_r5, tr_r10) = compute_irtr_recall(pl_module, split="test")
        test_avg = (ir_r1.item() + ir_r5.item() + ir_r10.item() + tr_r1.item() + tr_r5.item() + tr_r10.item()) / 6.0
        pl_module.logger.experiment.add_scalar(
            "recalls/test_avg", test_avg, pl_module.global_step
        )

        print("val_avg:{}, test_avg:{}".format(val_avg, test_avg))
        print("test ir_r1:{}, ir_r5:{}, ir_r10:{}, tr_r1:{}, tr_r5:{}, tr_r10:{}".format(ir_r1, ir_r5, ir_r10, tr_r1, tr_r5, tr_r10))
        pl_module.logger.experiment.add_scalar(
            "recalls/ir_r1", ir_r1, pl_module.global_step
        )
        pl_module.logger.experiment.add_scalar(
            "recalls/ir_r5", ir_r5, pl_module.global_step
        )
        pl_module.logger.experiment.add_scalar(
            "recalls/ir_r10", ir_r10, pl_module.global_step
        )
        pl_module.logger.experiment.add_scalar(
            "recalls/tr_r1", tr_r1, pl_module.global_step
        )
        pl_module.logger.experiment.add_scalar(
            "recalls/tr_r5", tr_r5, pl_module.global_step
        )
        pl_module.logger.experiment.add_scalar(
            "recalls/tr_r10", tr_r10, pl_module.global_step
        )
        the_metric += val_avg


    for loss_name, v in pl_module.hparams.config["loss_names"].items():
        if v < 1:
            continue

        value = 0

        if loss_name == "vqa":
            value = getattr(pl_module, f"{phase}_{loss_name}_score").compute()
            pl_module.log(f"{loss_name}/{phase}/score_epoch", value)
            getattr(pl_module, f"{phase}_{loss_name}_score").reset()
            pl_module.log(
                f"{loss_name}/{phase}/loss_epoch",
                getattr(pl_module, f"{phase}_{loss_name}_loss").compute(),
            )
            getattr(pl_module, f"{phase}_{loss_name}_loss").reset()
        elif loss_name == "nlvr2":
            if phase == "train":
                value = getattr(pl_module, f"train_{loss_name}_accuracy").compute()
                pl_module.log(f"{loss_name}/train/accuracy_epoch", value)
                getattr(pl_module, f"train_{loss_name}_accuracy").reset()
                pl_module.log(
                    f"{loss_name}/train/loss_epoch",
                    getattr(pl_module, f"train_{loss_name}_loss").compute(),
                )
                getattr(pl_module, f"train_{loss_name}_loss").reset()
            else:
                value_dev = getattr(pl_module, f"dev_{loss_name}_accuracy").compute()
                pl_module.log(f"{loss_name}/dev/accuracy_epoch", value_dev)
                getattr(pl_module, f"dev_{loss_name}_accuracy").reset()
                pl_module.log(
                    f"{loss_name}/dev/loss_epoch",
                    getattr(pl_module, f"dev_{loss_name}_loss").compute(),
                )
                getattr(pl_module, f"dev_{loss_name}_loss").reset()

                value_test = getattr(pl_module, f"test_{loss_name}_accuracy").compute()
                pl_module.log(f"{loss_name}/test/accuracy_epoch", value_test)
                getattr(pl_module, f"test_{loss_name}_accuracy").reset()
                pl_module.log(
                    f"{loss_name}/test/loss_epoch",
                    getattr(pl_module, f"test_{loss_name}_loss").compute(),
                )
                getattr(pl_module, f"test_{loss_name}_loss").reset()
                value = value_dev
        elif loss_name == "irtr":
            value_i2t = getattr(pl_module, f"{phase}_{loss_name}_i2t_accuracy").compute()
            pl_module.log(f"{loss_name}/{phase}/i2t_accuracy_epoch", value_i2t)
            getattr(pl_module, f"{phase}_{loss_name}_i2t_accuracy").reset()
            
            value_t2i = getattr(pl_module, f"{phase}_{loss_name}_t2i_accuracy").compute()
            pl_module.log(f"{loss_name}/{phase}/t2i_accuracy_epoch", value_t2i)
            getattr(pl_module, f"{phase}_{loss_name}_t2i_accuracy").reset()

            value = value_i2t + value_t2i
            
            pl_module.log(
                f"{loss_name}/{phase}/loss_epoch",
                getattr(pl_module, f"{phase}_{loss_name}_loss").compute(),
            )
            getattr(pl_module, f"{phase}_{loss_name}_loss").reset()
        elif loss_name == "itm":
            value = getattr(pl_module, f"{phase}_{loss_name}_accuracy").compute()
            pl_module.log(f"{loss_name}/{phase}/accuracy_epoch", value)
            getattr(pl_module, f"{phase}_{loss_name}_accuracy").reset()
            pl_module.log(
                f"{loss_name}/{phase}/loss_epoch",
                getattr(pl_module, f"{phase}_{loss_name}_loss").compute(),
            )
            getattr(pl_module, f"{phase}_{loss_name}_loss").reset()
        elif loss_name == "itc":
            value_i2t = getattr(pl_module, f"{phase}_{loss_name}_i2t_accuracy").compute()
            pl_module.log(f"{loss_name}/{phase}/i2t_accuracy_epoch", value_i2t)
            getattr(pl_module, f"{phase}_{loss_name}_i2t_accuracy").reset()
            
            value_t2i = getattr(pl_module, f"{phase}_{loss_name}_t2i_accuracy").compute()
            pl_module.log(f"{loss_name}/{phase}/t2i_accuracy_epoch", value_t2i)
            getattr(pl_module, f"{phase}_{loss_name}_t2i_accuracy").reset()
            
            pl_module.log(
                f"{loss_name}/{phase}/loss_epoch",
                getattr(pl_module, f"{phase}_{loss_name}_loss").compute(),
            )
            getattr(pl_module, f"{phase}_{loss_name}_loss").reset()

            value_vl_i2t = getattr(pl_module, f"{phase}_{loss_name}_vl_i2t_accuracy").compute()
            pl_module.log(f"{loss_name}/{phase}/vl_i2t_accuracy_epoch", value_vl_i2t)
            getattr(pl_module, f"{phase}_{loss_name}_vl_i2t_accuracy").reset()
            
            value_vl_t2i = getattr(pl_module, f"{phase}_{loss_name}_vl_t2i_accuracy").compute()
            pl_module.log(f"{loss_name}/{phase}/vl_t2i_accuracy_epoch", value_vl_t2i)
            getattr(pl_module, f"{phase}_{loss_name}_vl_t2i_accuracy").reset()

            value = value_i2t + value_t2i
        else:
            value = getattr(pl_module, f"{phase}_{loss_name}_accuracy").compute()
            pl_module.log(f"{loss_name}/{phase}/accuracy_epoch", value)
            getattr(pl_module, f"{phase}_{loss_name}_accuracy").reset()
            pl_module.log(
                f"{loss_name}/{phase}/loss_epoch",
                getattr(pl_module, f"{phase}_{loss_name}_loss").compute(),
            )
            getattr(pl_module, f"{phase}_{loss_name}_loss").reset()

        the_metric += value

    pl_module.log(f"{phase}/the_metric", the_metric)


def check_non_acc_grad(pl_module):
    if pl_module.token_type_embeddings.weight.grad is None:
        return True
    else:
        grad = pl_module.token_type_embeddings.weight.grad
        return (grad.sum() == 0).item()


def set_task(pl_module):
    pl_module.current_tasks = [
        k for k, v in pl_module.hparams.config["loss_names"].items() if v >= 1
    ]
    return


def set_schedule(pl_module):
    lr = pl_module.hparams.config["learning_rate"]
    wd = pl_module.hparams.config["weight_decay"]

    no_decay = [
        "bias",
        "LayerNorm.bias",
        "LayerNorm.weight",
        "norm.bias",
        "norm.weight",
        "norm1.bias",
        "norm1.weight",
        "norm2.bias",
        "norm2.weight",
    ]
    head_names = ["vqa_classifier", "nlvr2_classifier"]
    lr_mult = pl_module.hparams.config["lr_mult"]
    end_lr = pl_module.hparams.config["end_lr"]
    decay_power = pl_module.hparams.config["decay_power"]
    optim_type = pl_module.hparams.config["optim_type"]

    names = [n for n, p in pl_module.named_parameters()]
    optimizer_grouped_parameters = [
        {
            "params": [
                p
                for n, p in pl_module.named_parameters()
                if not any(nd in n for nd in no_decay)
                and not any(bb in n for bb in head_names)
            ],
            "weight_decay": wd,
            "lr": lr,
        },
        {
            "params": [
                p
                for n, p in pl_module.named_parameters()
                if any(nd in n for nd in no_decay)
                and not any(bb in n for bb in head_names)
            ],
            "weight_decay": 0.0,
            "lr": lr,
        },
        {
            "params": [
                p
                for n, p in pl_module.named_parameters()
                if not any(nd in n for nd in no_decay)
                and any(bb in n for bb in head_names)
            ],
            "weight_decay": wd,
            "lr": lr * lr_mult,
        },
        {
            "params": [
                p
                for n, p in pl_module.named_parameters()
                if any(nd in n for nd in no_decay) and any(bb in n for bb in head_names)
            ],
            "weight_decay": 0.0,
            "lr": lr * lr_mult,
        },
    ]

    if optim_type == "adamw":
        optimizer = AdamW(
            optimizer_grouped_parameters, lr=lr, eps=1e-8, betas=(0.9, 0.98)
        )
    elif optim_type == "adam":
        optimizer = torch.optim.Adam(optimizer_grouped_parameters, lr=lr)
    elif optim_type == "sgd":
        optimizer = torch.optim.SGD(optimizer_grouped_parameters, lr=lr, momentum=0.9)

    if pl_module.trainer.max_steps is None or pl_module.trainer.max_steps==-1:
        max_steps = (
            len(pl_module.trainer.datamodule.train_dataloader())
            * pl_module.trainer.max_epochs
            // pl_module.trainer.accumulate_grad_batches
        )
    else:
        max_steps = pl_module.trainer.max_steps

    warmup_steps = pl_module.hparams.config["warmup_steps"]
    if isinstance(pl_module.hparams.config["warmup_steps"], float):
        warmup_steps = int(max_steps * warmup_steps)
    rank_zero_info("Warmup_steps:{} \t Max_steps:{}".format(warmup_steps, max_steps))

    if decay_power == "cosine":
        scheduler = get_cosine_schedule_with_warmup(
            optimizer,
            num_warmup_steps=warmup_steps,
            num_training_steps=max_steps,
        )
    else:
        scheduler = get_polynomial_decay_schedule_with_warmup(
            optimizer,
            num_warmup_steps=warmup_steps,
            num_training_steps=max_steps,
            lr_end=end_lr,
            power=decay_power,
        )

    sched = {"scheduler": scheduler, "interval": "step"}

    return (
        [optimizer],
        [sched],
    )