datamodule_base.py 5.92 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import torch

from pytorch_lightning import LightningDataModule
from torch.utils.data import DataLoader
from transformers import (
    DataCollatorForLanguageModeling,
    DataCollatorForWholeWordMask,
    BertTokenizer,
)


def get_pretrained_tokenizer(from_pretrained):
    if torch.distributed.is_initialized():
        if torch.distributed.get_rank() == 0:
            BertTokenizer.from_pretrained(
                from_pretrained, do_lower_case="uncased" in from_pretrained
            )
        torch.distributed.barrier()
    return BertTokenizer.from_pretrained(
        from_pretrained, do_lower_case="uncased" in from_pretrained
    )


class BaseDataModule(LightningDataModule):
    def __init__(self, _config):
        super().__init__()

        self.data_dir = _config["data_root"]

        self.num_workers = _config["num_workers"]
        self.batch_size = _config["per_gpu_batchsize"]
        self.eval_batch_size = self.batch_size

        self.image_size = _config["image_size"]
        self.max_text_len = _config["max_text_len"]
        self.draw_false_image = _config["draw_false_image"]
        self.draw_false_text = _config["draw_false_text"]
        self.image_only = _config["image_only"]
        self.text_only = _config["text_only"]

        self.train_transform_keys = (
            ["default_train"]
            if len(_config["train_transform_keys"]) == 0
            else _config["train_transform_keys"]
        )

        self.val_transform_keys = (
            ["default_val"]
            if len(_config["val_transform_keys"]) == 0
            else _config["val_transform_keys"]
        )

        tokenizer = _config["tokenizer"]
        self.tokenizer = get_pretrained_tokenizer(tokenizer)
        self.vocab_size = self.tokenizer.vocab_size

        collator = (
            DataCollatorForWholeWordMask
            if _config["whole_word_masking"]
            else DataCollatorForLanguageModeling
        )

        self.mlm_collator = collator(
            tokenizer=self.tokenizer, mlm=True, mlm_probability=_config["mlm_prob"]
        )
        self.setup_flag = False

    @property
    def dataset_cls(self):
        raise NotImplementedError("return tuple of dataset class")

    @property
    def dataset_name(self):
        raise NotImplementedError("return name of dataset")

    def set_train_dataset(self):
        self.train_dataset = self.dataset_cls(
            self.data_dir,
            self.train_transform_keys,
            split="train",
            image_size=self.image_size,
            max_text_len=self.max_text_len,
            draw_false_image=self.draw_false_image,
            draw_false_text=self.draw_false_text,
            image_only=self.image_only,
        )

    def set_val_dataset(self):
        self.val_dataset = self.dataset_cls(
            self.data_dir,
            self.val_transform_keys,
            split="val",
            image_size=self.image_size,
            max_text_len=self.max_text_len,
            draw_false_image=self.draw_false_image,
            draw_false_text=self.draw_false_text,
            image_only=self.image_only,
        )

        if hasattr(self, "dataset_cls_no_false"):
            self.val_dataset_no_false = self.dataset_cls_no_false(
                self.data_dir,
                self.val_transform_keys,
                split="val",
                image_size=self.image_size,
                max_text_len=self.max_text_len,
                draw_false_image=0,
                draw_false_text=0,
                image_only=self.image_only,
            )

    def make_no_false_val_dset(self, image_only=False):
        return self.dataset_cls_no_false(
            self.data_dir,
            self.val_transform_keys,
            split="val",
            image_size=self.image_size,
            max_text_len=self.max_text_len,
            draw_false_image=0,
            draw_false_text=0,
            image_only=image_only,
        )

    def make_no_false_test_dset(self, image_only=False):
        return self.dataset_cls_no_false(
            self.data_dir,
            self.val_transform_keys,
            split="test",
            image_size=self.image_size,
            max_text_len=self.max_text_len,
            draw_false_image=0,
            draw_false_text=0,
            image_only=image_only,
        )

    def set_test_dataset(self):
        self.test_dataset = self.dataset_cls(
            self.data_dir,
            self.val_transform_keys,
            split="test",
            image_size=self.image_size,
            max_text_len=self.max_text_len,
            draw_false_image=self.draw_false_image,
            draw_false_text=self.draw_false_text,
            image_only=self.image_only,
        )

    def setup(self, stage):
        if not self.setup_flag:
            self.set_train_dataset()
            self.set_val_dataset()
            self.set_test_dataset()

            self.train_dataset.tokenizer = self.tokenizer
            self.val_dataset.tokenizer = self.tokenizer
            self.test_dataset.tokenizer = self.tokenizer

            self.setup_flag = True

    def train_dataloader(self):
        loader = DataLoader(
            self.train_dataset,
            batch_size=self.batch_size,
            shuffle=True,
            num_workers=self.num_workers,
            pin_memory=True,
            collate_fn=self.train_dataset.collate,
        )
        return loader

    def val_dataloader(self):
        loader = DataLoader(
            self.val_dataset,
            batch_size=self.eval_batch_size,
            shuffle=False,
            num_workers=self.num_workers,
            pin_memory=True,
            collate_fn=self.val_dataset.collate,
        )
        return loader

    def test_dataloader(self):
        loader = DataLoader(
            self.test_dataset,
            batch_size=self.eval_batch_size,
            shuffle=False,
            num_workers=self.num_workers,
            pin_memory=True,
            collate_fn=self.test_dataset.collate,
        )
        return loader