config.py 13.1 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
from sacred import Experiment

ex = Experiment("VLMo")


def _loss_names(d):
    ret = {
        "itm": 0, # image-text matching loss
        "itc": 0, # image-text contrastive loss
        "mlm": 0, # masked language modeling loss
        "textmlm": 0, # text-only masked language modeling
        "vqa": 0,
        "nlvr2": 0,
        "irtr": 0, # retrieval task ft
    }
    ret.update(d)
    return ret


@ex.config
def config():
    exp_name = "vlmo"
    seed = 1
    datasets = ["coco", "vg", "sbu", "gcc"]
    loss_names = _loss_names({"itm": 1, "itc": 1, "mlm": 1})
    batch_size = 1024  # this is a desired batch size; pl trainer will accumulate gradients when per step batch is smaller.

    # Image setting
    train_transform_keys = ["square_transform_randaug"]
    val_transform_keys = ["square_transform"]
    image_size = 224
    draw_false_image = 0
    image_only = False
    text_only = False

    # Text Setting
    vqav2_label_size = 3129
    max_text_len = 40
    max_text_len_of_initckpt = 196
    tokenizer = "bert-base-uncased"
    vocab_size = 30522
    whole_word_masking = False
    mlm_prob = 0.15
    draw_false_text = 0

    # Transformer Setting
    model_arch = "vlmo_base_patch16"
    drop_path_rate = 0.1

    # Optimizer Setting
    optim_type = "adamw"
    learning_rate = 1e-4
    weight_decay = 0.01
    decay_power = 1
    max_epoch = 100
    max_steps = 200000
    warmup_steps = 0.1
    end_lr = 0
    lr_mult = 1  # multiply lr for downstream heads

    # Downstream Setting
    get_recall_metric = False
    get_recall_rerank_metric = False
    k_test = 32

    # PL Trainer Setting
    resume_from = None
    fast_dev_run = False
    val_check_interval = 1.0
    test_only = False
    use_sharded_training = False
    resume_during_training = False

    # below params varies with the environment
    data_root = ""
    log_dir = "result"
    per_gpu_batchsize = 4  # you should define this manually with per_gpu_batch_size=#
    num_gpus = 1
    num_nodes = 1
    load_path = ""
    num_workers = 8
    precision = 16


# ----------------------- language pretraining config -----------------------


@ex.named_config
def task_textmlm_base():
    exp_name = "textmlm_base"
    datasets = ["wikibk"]
    loss_names = _loss_names({"textmlm": 1})
    batch_size = 1024
    max_text_len = 196
    learning_rate = 2e-4
    whole_word_masking = True
    train_transform_keys = ["square_transform_randaug"]
    val_transform_keys = ["square_transform"]
    model_arch = "vlmo_base_patch16"


@ex.named_config
def task_textmlm_base_plus():
    exp_name = "textmlm_base_plus"
    datasets = ["wikibk"]
    loss_names = _loss_names({"textmlm": 1})
    batch_size = 1024
    max_text_len = 196
    learning_rate = 2e-4
    whole_word_masking = True
    train_transform_keys = ["square_transform_randaug"]
    val_transform_keys = ["square_transform"]
    model_arch = "vlmo_base_plus_patch16"


# ----------------------- vision-language pretraining config -----------------------


# Named configs for "task" which define datasets, loss_names and desired batch_size, warmup_steps, epochs, and exp_name
@ex.named_config
def task_mlm_itm_itc_base():
    exp_name = "mlm_itm_itc_base"
    datasets = ["coco", "vg", "sbu", "gcc"]
    loss_names = _loss_names({"itm": 1, "mlm": 1, "itc": 1})
    batch_size = 1024
    whole_word_masking = True
    learning_rate = 2e-4
    train_transform_keys = ["square_transform_randaug"]
    val_transform_keys = ["square_transform"]
    model_arch = "vlmo_base_patch16"


@ex.named_config
def task_mlm_itm_itc_base_plus():
    exp_name = "mlm_itm_itc_base_plus"
    datasets = ["coco", "vg", "sbu", "gcc"]
    loss_names = _loss_names({"itm": 1, "mlm": 1, "itc": 1})
    batch_size = 1024
    whole_word_masking = True
    learning_rate = 1e-4
    train_transform_keys = ["square_transform_randaug"]
    val_transform_keys = ["square_transform"]
    model_arch = "vlmo_base_plus_patch16"


@ex.named_config
def task_mlm_itm_itc_large():
    exp_name = "mlm_itm_itc_large"
    datasets = ["coco", "vg", "sbu", "gcc"]
    loss_names = _loss_names({"itm": 1, "mlm": 1, "itc": 1})
    batch_size = 1024
    whole_word_masking = True
    learning_rate = 5e-5
    train_transform_keys = ["square_transform_randaug"]
    val_transform_keys = ["square_transform"]
    model_arch = "vit_large_patch16_224"


# ----------------------- NLVR2 fine-tuning configs -----------------------


@ex.named_config
def task_finetune_nlvr2_base():
    exp_name = "finetune_nlvr2_base"
    datasets = ["nlvr2"]
    train_transform_keys = ["square_transform_randaug"]
    loss_names = _loss_names({"nlvr2": 1})
    batch_size = 128
    max_epoch = 10
    max_steps = None
    warmup_steps = 0.1
    learning_rate = 5e-5
    val_transform_keys = ["square_transform"]
    use_sharded_training=False
    model_arch = "vlmo_base_patch16"


@ex.named_config
def task_finetune_nlvr2_base_plus():
    exp_name = "finetune_nlvr2_base_plus"
    datasets = ["nlvr2"]
    train_transform_keys = ["square_transform_randaug"]
    loss_names = _loss_names({"nlvr2": 1})
    batch_size = 128
    max_epoch = 10
    max_steps = None
    warmup_steps = 0.1
    learning_rate = 3e-5
    drop_path_rate = 0.2
    val_transform_keys = ["square_transform"]
    use_sharded_training=False
    model_arch = "vlmo_base_plus_patch16"


@ex.named_config
def task_finetune_nlvr2_base_image384():
    exp_name = "finetune_nlvr2_base_image384"
    datasets = ["nlvr2"]
    train_transform_keys = ["square_transform_randaug"]
    loss_names = _loss_names({"nlvr2": 1})
    batch_size = 128
    max_epoch = 10
    max_steps = None
    warmup_steps = 0.1
    learning_rate = 5e-5
    val_transform_keys = ["square_transform"]
    image_size = 384
    use_sharded_training=False
    model_arch = "vlmo_base_patch16"


@ex.named_config
def task_finetune_nlvr2_base_plus_image384():
    exp_name = "finetune_nlvr2_base_plus_image384"
    datasets = ["nlvr2"]
    train_transform_keys = ["square_transform_randaug"]
    loss_names = _loss_names({"nlvr2": 1})
    batch_size = 128
    max_epoch = 10
    max_steps = None
    warmup_steps = 0.1
    learning_rate = 3e-5
    drop_path_rate = 0.2
    val_transform_keys = ["square_transform"]
    image_size = 384
    use_sharded_training=False
    model_arch = "vlmo_base_plus_patch16"


@ex.named_config
def task_finetune_nlvr2_large():
    exp_name = "finetune_nlvr2_large"
    datasets = ["nlvr2"]
    train_transform_keys = ["square_transform_randaug"]
    loss_names = _loss_names({"nlvr2": 1})
    batch_size = 128
    max_epoch = 10
    max_steps = None
    warmup_steps = 0.1
    learning_rate = 3e-5
    drop_path_rate = 0.15
    val_transform_keys = ["square_transform"]
    use_sharded_training=False
    model_arch = "vlmo_large_patch16"


@ex.named_config
def task_finetune_nlvr2_large_image384():
    exp_name = "finetune_nlvr2_large_image384"
    datasets = ["nlvr2"]
    train_transform_keys = ["square_transform_randaug"]
    loss_names = _loss_names({"nlvr2": 1})
    batch_size = 128
    max_epoch = 10
    max_steps = None
    warmup_steps = 0.1
    learning_rate = 3e-5
    drop_path_rate = 0.15
    val_transform_keys = ["square_transform"]
    image_size = 384
    use_sharded_training=False
    model_arch = "vlmo_large_patch16"


# ----------------------- VQAv2 Fine-tuning configs -----------------------


@ex.named_config
def task_finetune_vqa_base_image480():
    exp_name = "finetune_vqa_base_image480"
    datasets = ["vqa"]
    train_transform_keys = ["square_transform_randaug"]
    loss_names = _loss_names({"vqa": 1})
    batch_size = 128
    max_epoch = 10
    max_steps = None
    warmup_steps = 0.1
    learning_rate = 3e-5
    drop_path_rate = 0.15
    val_transform_keys = ["square_transform"]
    lr_mult = 20
    image_size = 480
    use_sharded_training=False
    model_arch = "vlmo_base_patch16"


@ex.named_config
def task_finetune_vqa_base_plus_image480():
    exp_name = "finetune_vqa_base_plus_image480"
    datasets = ["vqa"]
    train_transform_keys = ["square_transform_randaug"]
    loss_names = _loss_names({"vqa": 1})
    batch_size = 128
    max_epoch = 10
    max_steps = None
    warmup_steps = 0.1
    learning_rate = 3e-5
    drop_path_rate = 0.15
    val_transform_keys = ["square_transform"]
    lr_mult = 20
    image_size = 480
    use_sharded_training=False
    model_arch = "vlmo_base_plus_patch16"


@ex.named_config
def task_finetune_vqa_large_image480():
    exp_name = "finetune_vqa_large_image480"
    datasets = ["vqa"]
    train_transform_keys = ["square_transform_randaug"]
    loss_names = _loss_names({"vqa": 1})
    batch_size = 128
    max_epoch = 10
    max_steps = None
    warmup_steps = 0.1
    learning_rate = 1.5e-5
    drop_path_rate = 0.15
    val_transform_keys = ["square_transform"]
    lr_mult = 20
    image_size = 480
    use_sharded_training=False
    model_arch = "vlmo_large_patch16"


# ----------------------- F30K IR/TR Fine-tuning configs -----------------------


@ex.named_config
def task_finetune_irtr_f30k_base():
    exp_name = "finetune_irtr_f30k_base"
    datasets = ["f30k"]
    train_transform_keys = ["square_transform_randaug"]
    val_transform_keys = ["square_transform"]
    loss_names = _loss_names({"irtr": 1.0})
    batch_size = 3072
    max_epoch = 50
    max_steps = 1500
    warmup_steps = 150
    get_recall_metric = True
    learning_rate = 3e-5
    drop_path_rate = 0.15
    use_sharded_training=False
    model_arch = "vlmo_base_patch16"


@ex.named_config
def task_finetune_irtr_f30k_base_image384():
    exp_name = "finetune_irtr_f30k_base_image384"
    datasets = ["f30k"]
    train_transform_keys = ["square_transform_randaug"]
    val_transform_keys = ["square_transform"]
    loss_names = _loss_names({"irtr": 1.0})
    batch_size = 3072
    max_epoch = 50
    max_steps = 1500
    warmup_steps = 150
    get_recall_metric = True
    learning_rate = 3e-5
    drop_path_rate = 0.15
    image_size = 384
    use_sharded_training=False
    model_arch = "vlmo_base_patch16"


@ex.named_config
def task_finetune_irtr_f30k_base_plus_image384():
    exp_name = "finetune_irtr_f30k_base_plus_image384"
    datasets = ["f30k"]
    train_transform_keys = ["square_transform_randaug"]
    val_transform_keys = ["square_transform"]
    loss_names = _loss_names({"irtr": 1.0})
    batch_size = 3072
    max_epoch = 50
    max_steps = 1500
    warmup_steps = 150
    get_recall_metric = True
    learning_rate = 3e-5
    drop_path_rate = 0.2
    image_size = 384
    use_sharded_training=False
    model_arch = "vlmo_base_plus_patch16"


@ex.named_config
def task_finetune_irtr_f30k_large_image384():
    exp_name = "finetune_irtr_f30k_large_image384"
    datasets = ["f30k"]
    train_transform_keys = ["square_transform_randaug"]
    val_transform_keys = ["square_transform"]
    loss_names = _loss_names({"irtr": 1.0})
    batch_size = 3072
    max_epoch = 50
    max_steps = 1500
    warmup_steps = 150
    get_recall_metric = True
    learning_rate = 2e-5
    drop_path_rate = 0.2
    image_size = 384
    use_sharded_training=False
    model_arch = "vlmo_large_patch16"


# ----------------------- COCO IR/TR Fine-tuning configs -----------------------


@ex.named_config
def task_finetune_irtr_coco_base_image384():
    exp_name = "finetune_irtr_coco_base_image384"
    datasets = ["coco"]
    train_transform_keys = ["square_transform_randaug"]
    val_transform_keys = ["square_transform"]
    loss_names = _loss_names({"irtr": 1.0})
    batch_size = 3072
    max_epoch = 50
    max_steps = 3000
    warmup_steps = 300
    get_recall_metric = True
    learning_rate = 3e-5
    drop_path_rate = 0.2
    image_size = 384
    use_sharded_training=False
    model_arch = "vlmo_base_patch16"


@ex.named_config
def task_finetune_irtr_coco_base_plus_image384():
    exp_name = "finetune_irtr_coco_base_plus_image384"
    datasets = ["coco"]
    train_transform_keys = ["square_transform_randaug"]
    val_transform_keys = ["square_transform"]
    loss_names = _loss_names({"irtr": 1.0})
    batch_size = 3072
    max_epoch = 50
    max_steps = 3000
    warmup_steps = 300
    get_recall_metric = True
    learning_rate = 3e-5
    drop_path_rate = 0.2
    image_size = 384
    use_sharded_training=False
    model_arch = "vlmo_base_plus_patch16"


@ex.named_config
def task_finetune_irtr_coco_large_image384():
    exp_name = "finetune_irtr_coco_large_image384"
    datasets = ["coco"]
    train_transform_keys = ["square_transform_randaug"]
    val_transform_keys = ["square_transform"]
    loss_names = _loss_names({"irtr": 1.0})
    batch_size = 3072
    max_epoch = 50
    max_steps = 3000
    warmup_steps = 300
    get_recall_metric = True
    learning_rate = 2e-5
    drop_path_rate = 0.2
    image_size = 384
    use_sharded_training=False
    model_arch = "vlmo_large_patch16"


# ----------------------- Other configs -----------------------


# Named configs for "etc" which are orthogonal to "env" and "task", need to be added at the end
@ex.named_config
def step1_5k():
    max_epoch = 100
    warmup_steps = 150
    max_steps = 1500


@ex.named_config
def step3k():
    max_epoch = 100
    warmup_steps = 300
    max_steps = 3000


@ex.named_config
def step200k():
    max_epoch = 200
    warmup_steps = 2500
    max_steps = 200000


@ex.named_config
def step500k():
    max_epoch = 500
    warmup_steps = 2500
    max_steps = 500000