gguf.py 4.92 KB
Newer Older
Rayyyyy's avatar
Rayyyyy committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import requests
import logging
import time
from tqdm import tqdm
from requests.exceptions import RequestException
import transformers
from lm_eval.utils import Reorderer
from lm_eval.base import BaseLM

logger = logging.getLogger(__name__)


def get_result(logprobs, context_length):
    is_greedy = True
    offsets = logprobs['text_offset']
    tokens = logprobs['tokens']
    tokens_logprobs = logprobs['token_logprobs']

    idx = 0
    while offsets[idx] < context_length:
        idx += 1
    continuation_logprobs = sum(tokens_logprobs[idx:-1])
    for i in range(idx, len(tokens)):
        token = tokens[i]
        top_tokens = logprobs["top_logprobs"][i]
        top_token = max(top_tokens.keys(), key=lambda x: top_tokens[x])
        if top_token != token:
            is_greedy = False
            break

    return continuation_logprobs, is_greedy


class GGUFLM(BaseLM):
    def __init__(self, base_url, max_length=2048):
        super().__init__()
        self.base_url = base_url
        self.logprobs = 10
        self.temperature = 0.0
        self.max_length = max_length

    def gguf_completion(self, context, continuation=None, stop=None, retries=3, delay=5, **kwargs):
        for _ in range(retries):
            try:
                prompt = context
                request = {'prompt': prompt, 'logprobs': self.logprobs,
                           'temperature': self.temperature}
                if continuation:
                    prompt += continuation
                    request.update({'prompt': prompt, 'max_tokens': 1, 'echo': True})
                if stop is not None:
                    request['stop'] = stop
                response = requests.post(f"{self.base_url}/v1/completions", json=request)
                response.raise_for_status()
                return response.json()
            except RequestException as e:
                logger.error(f"RequestException: {e}")
                time.sleep(delay)  # wait before retrying
        else:
            raise Exception(f"Failed to get a valid response after {retries} retries.")

    def loglikelihood(self, requests):
        if not requests:
            return []
        res = []
        for context, continuation in tqdm(requests):
            response = self.gguf_completion(context=context, continuation=continuation)
            if response and "choices" in response and response["choices"]:
                choice = response["choices"][0]
                logprobs = choice.get("logprobs")
                if logprobs and "token_logprobs" in logprobs and logprobs["token_logprobs"]:
                    logprob, is_greedy = get_result(logprobs, len(context))
                    res.append((logprob, is_greedy))
                else:
                    logger.warning("Invalid logprobs data. Expected 'logprobs' to contain 'token_logprobs' list.")
            else:
                logger.error(f"Invalid response for loglikelihood. Response: {response}")
                assert False
        return res

    def greedy_until(self, requests):
        if not requests:
            return []

        res = []
        for request in tqdm(requests):
            inp = request[0]
            request_args = request[1]
            until = request_args["until"]
            response = self.gguf_completion(context=inp, stop=until)
            if response and "choices" in response and response["choices"]:
                choice = response["choices"][0]
                if "text" in choice:
                    generated_text = choice["text"].strip()
                    res.append(generated_text)
                else:
                    logger.error(f"Invalid response for greedy_until. Response: {response}")
                    res.append(None)  # Add default value in case of error
            else:
                logger.error(f"Invalid response for greedy_until. Response: {response}")
                res.append(None)  # Add default value in case of error
        return res

    def loglikelihood_rolling(self, requests):
        raise NotImplementedError("loglikelihood_rolling not yet supported for GGUF models")

    def _model_call(self, inps):
        # Placeholder implementation
        raise NotImplementedError()

    def _model_generate(self, context, max_length, eos_token_id):
        # Placeholder implementation
        raise NotImplementedError()

    def tok_encode(self, string: str):
        raise NotImplementedError()

    def tok_decode(self, tokens):
        raise NotImplementedError()

    @property
    def batch_size(self):
        # Placeholder implementation
        raise NotImplementedError()

    @property
    def device(self):
        # Placeholder implementation
        raise NotImplementedError()

    @property
    def eot_token_id(self):
        # Placeholder implementation
        raise NotImplementedError()

    def max_length(self):
        return self.max_length

    @property
    def max_gen_toks(self):
        # Placeholder implementation
        raise NotImplementedError()