anthropic_llms.py 12.1 KB
Newer Older
Rayyyyy's avatar
Rayyyyy committed
1
2
from typing import Any, List, Tuple

Rayyyyy's avatar
Rayyyyy committed
3
4
from tqdm import tqdm

Rayyyyy's avatar
Rayyyyy committed
5
6
7
8
9
10
11
from lm_eval import utils
from lm_eval.api.model import LM
from lm_eval.api.registry import register_model
from lm_eval.models.utils import retry_on_specific_exceptions


eval_logger = utils.eval_logger
Rayyyyy's avatar
Rayyyyy committed
12
13


Rayyyyy's avatar
Rayyyyy committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
def anthropic_completion(
    client,  #: anthropic.Anthropic,
    model: str,
    prompt: str,
    max_tokens_to_sample: int,
    temperature: float,
    stop: List[str],
    **kwargs: Any,
) -> str:
    """Wrapper function around the Anthropic completion API client with exponential back-off
    in case of RateLimitError.

    params:
        client: anthropic.Anthropic
            Anthropic API client
        model: str
            Anthropic model e.g. 'claude-instant-v1', 'claude-2'
        prompt: str
            Prompt to feed to the model
        max_tokens_to_sample: int
            Maximum number of tokens to sample from the model
        temperature: float
            Sampling temperature
        stop: List[str]
            List of stop sequences
        kwargs: Any
            Additional model_args to pass to the API client
Rayyyyy's avatar
Rayyyyy committed
41
42
    """

Rayyyyy's avatar
Rayyyyy committed
43
44
45
46
47
48
49
    try:
        import anthropic
    except ModuleNotFoundError:
        raise Exception(
            "attempted to use 'anthropic' LM type, but package `anthropic` is not installed. \
please install anthropic via `pip install 'lm-eval[anthropic]'` or `pip install -e '.[anthropic]'`",
        )
Rayyyyy's avatar
Rayyyyy committed
50

Rayyyyy's avatar
Rayyyyy committed
51
52
53
54
    def _exception_callback(e: Exception, sleep_time: float) -> None:
        eval_logger.warning(
            f"RateLimitError occurred: {e.__cause__}\n Retrying in {sleep_time} seconds"
        )
Rayyyyy's avatar
Rayyyyy committed
55

Rayyyyy's avatar
Rayyyyy committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
    @retry_on_specific_exceptions(
        on_exceptions=[anthropic.RateLimitError],
        max_retries=None,  # retry forever, consider changing
        on_exception_callback=_exception_callback,
    )
    def completion():
        response = client.completions.create(
            prompt=f"{anthropic.HUMAN_PROMPT} {prompt}{anthropic.AI_PROMPT}",
            model=model,
            # NOTE: Claude really likes to do CoT, and overly aggressive stop sequences
            #       (e.g. gsm8k's ":") may truncate a lot of the input.
            stop_sequences=[anthropic.HUMAN_PROMPT] + stop,
            max_tokens_to_sample=max_tokens_to_sample,
            temperature=temperature,
            **kwargs,
        )
        return response.completion
Rayyyyy's avatar
Rayyyyy committed
73

Rayyyyy's avatar
Rayyyyy committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
    return completion()


def anthropic_chat(
    client,  #: anthropic.Anthropic,
    model: str,
    prompt: str,
    max_tokens: int,
    temperature: float,
    stop: List[str],
    **kwargs: Any,
) -> str:
    """Wrapper function around the Anthropic completion API client with exponential back-off
    in case of RateLimitError.

    params:
        client: anthropic.Anthropic
            Anthropic API client
        model: str
            Anthropic model e.g. 'claude-3-opus-20240229', 'claude-3-sonnet-20240229'
        prompt: str
            Prompt to feed to the model
        max_tokens: int
            Maximum number of tokens to sample from the model
        temperature: float
            Sampling temperature
        stop: List[str]
            List of stop sequences
        kwargs: Any
            Additional model_args to pass to the API client
    """

    try:
        import anthropic
    except ModuleNotFoundError:
        raise Exception(
            "attempted to use 'anthropic' LM type, but package `anthropic` is not installed. \
please install anthropic via `pip install 'lm-eval[anthropic]'` or `pip install -e '.[anthropic]'`",
        )

    def _exception_callback(e: Exception, sleep_time: float) -> None:
        eval_logger.warning(
            f"RateLimitError occurred: {e.__cause__}\n Retrying in {sleep_time} seconds"
        )

    @retry_on_specific_exceptions(
        on_exceptions=[
            anthropic.RateLimitError,
            anthropic.APIConnectionError,
            anthropic.APIStatusError,
        ],
        max_retries=None,  # retry forever, consider changing
        on_exception_callback=_exception_callback,
    )
    def messages():
        response = client.messages.create(
            model=model,
            max_tokens=max_tokens,
            temperature=temperature,
            messages=[{"role": "user", "content": f"{prompt}"}],
            **kwargs,
        )
        return response.content[0].text

    return messages()
Rayyyyy's avatar
Rayyyyy committed
139

Rayyyyy's avatar
Rayyyyy committed
140
141
142
143
144
145
146
147
148
149
150
151
152
153

@register_model("anthropic")
class AnthropicLM(LM):
    REQ_CHUNK_SIZE = 20  # TODO: not used

    def __init__(
        self,
        batch_size: int = 1,
        model: str = "claude-2.0",
        max_tokens_to_sample: int = 256,
        temperature: float = 0,  # defaults to 1
        **kwargs,  # top_p, top_k, etc.
    ) -> None:
        """Anthropic API wrapper.
Rayyyyy's avatar
Rayyyyy committed
154
155

        :param model: str
Rayyyyy's avatar
Rayyyyy committed
156
157
158
159
160
161
162
            Anthropic model e.g. 'claude-instant-v1', 'claude-2'
        :param max_tokens_to_sample: int
            Maximum number of tokens to sample from the model
        :param temperature: float
            Sampling temperature
        :param kwargs: Any
            Additional model_args to pass to the API client
Rayyyyy's avatar
Rayyyyy committed
163
164
        """
        super().__init__()
Rayyyyy's avatar
Rayyyyy committed
165
166
167
168
169
170
171
172
173

        try:
            import anthropic
        except ModuleNotFoundError:
            raise Exception(
                "attempted to use 'anthropic' LM type, but package `anthropic` is not installed. \
please install anthropic via `pip install 'lm-eval[anthropic]'` or `pip install -e '.[anthropic]'`",
            )

Rayyyyy's avatar
Rayyyyy committed
174
        self.model = model
Rayyyyy's avatar
Rayyyyy committed
175
176
177
178
179
180
        # defaults to os.environ.get("ANTHROPIC_API_KEY")
        self.client = anthropic.Anthropic()
        self.temperature = temperature
        self.max_tokens_to_sample = max_tokens_to_sample
        self.tokenizer = self.client.get_tokenizer()
        self.kwargs = kwargs
Rayyyyy's avatar
Rayyyyy committed
181
182
183

    @property
    def eot_token_id(self):
Rayyyyy's avatar
Rayyyyy committed
184
        # Not sure but anthropic.HUMAN_PROMPT ?
Rayyyyy's avatar
Rayyyyy committed
185
186
187
        raise NotImplementedError("No idea about anthropic tokenization.")

    @property
Rayyyyy's avatar
Rayyyyy committed
188
    def max_length(self) -> int:
Rayyyyy's avatar
Rayyyyy committed
189
190
191
        return 2048

    @property
Rayyyyy's avatar
Rayyyyy committed
192
193
    def max_gen_toks(self) -> int:
        return self.max_tokens_to_sample
Rayyyyy's avatar
Rayyyyy committed
194
195
196
197

    @property
    def batch_size(self):
        # Isn't used because we override _loglikelihood_tokens
Rayyyyy's avatar
Rayyyyy committed
198
        raise NotImplementedError("No support for logits.")
Rayyyyy's avatar
Rayyyyy committed
199
200
201
202

    @property
    def device(self):
        # Isn't used because we override _loglikelihood_tokens
Rayyyyy's avatar
Rayyyyy committed
203
        raise NotImplementedError("No support for logits.")
Rayyyyy's avatar
Rayyyyy committed
204

Rayyyyy's avatar
Rayyyyy committed
205
206
    def tok_encode(self, string: str) -> List[int]:
        return self.tokenizer.encode(string).ids
Rayyyyy's avatar
Rayyyyy committed
207

Rayyyyy's avatar
Rayyyyy committed
208
209
    def tok_decode(self, tokens: List[int]) -> str:
        return self.tokenizer.decode(tokens)
Rayyyyy's avatar
Rayyyyy committed
210

Rayyyyy's avatar
Rayyyyy committed
211
    def _loglikelihood_tokens(self, requests, disable_tqdm: bool = False):
Rayyyyy's avatar
Rayyyyy committed
212
213
        raise NotImplementedError("No support for logits.")

Rayyyyy's avatar
Rayyyyy committed
214
215
216
217
218
219
220
221
222
    def generate_until(self, requests, disable_tqdm: bool = False) -> List[str]:
        try:
            import anthropic
        except ModuleNotFoundError:
            raise Exception(
                "attempted to use 'anthropic' LM type, but package `anthropic` is not installed. \
please install anthropic via `pip install 'lm-eval[anthropic]'` or `pip install -e '.[anthropic]'`",
            )

Rayyyyy's avatar
Rayyyyy committed
223
224
225
        if not requests:
            return []

Rayyyyy's avatar
Rayyyyy committed
226
227
        _requests: List[Tuple[str, dict]] = [req.args for req in requests]

Rayyyyy's avatar
Rayyyyy committed
228
        res = []
Rayyyyy's avatar
Rayyyyy committed
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
        for request in tqdm(_requests, disable=disable_tqdm):
            try:
                inp = request[0]
                request_args = request[1]
                # generation_kwargs
                until = request_args.get("until")
                max_gen_toks = request_args.get("max_gen_toks", self.max_length)
                temperature = request_args.get("temperature", self.temperature)
                response = anthropic_completion(
                    client=self.client,
                    model=self.model,
                    prompt=inp,
                    max_tokens_to_sample=max_gen_toks,
                    temperature=temperature,  # TODO: implement non-greedy sampling for Anthropic
                    stop=until,  # type: ignore
                    **self.kwargs,
                )
                res.append(response)

                self.cache_hook.add_partial("generate_until", request, response)
            except anthropic.APIConnectionError as e:  # type: ignore # noqa: F821
                eval_logger.critical(f"Server unreachable: {e.__cause__}")
                break
            except anthropic.APIStatusError as e:  # type: ignore # noqa: F821
                eval_logger.critical(f"API error {e.status_code}: {e.message}")
                break

Rayyyyy's avatar
Rayyyyy committed
256
257
258
259
260
261
262
        return res

    def _model_call(self, inps):
        # Isn't used because we override _loglikelihood_tokens
        raise NotImplementedError()

    def _model_generate(self, context, max_length, eos_token_id):
Rayyyyy's avatar
Rayyyyy committed
263
        # Isn't used because we override generate_until
Rayyyyy's avatar
Rayyyyy committed
264
        raise NotImplementedError()
Rayyyyy's avatar
Rayyyyy committed
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360

    def loglikelihood(self, requests, disable_tqdm: bool = False):
        raise NotImplementedError("No support for logits.")

    def loglikelihood_rolling(self, requests, disable_tqdm: bool = False):
        raise NotImplementedError("No support for logits.")


@register_model("anthropic-chat", "anthropic-chat-completions")
class AnthropicChatLM(AnthropicLM):
    REQ_CHUNK_SIZE = 20  # TODO: not used

    def __init__(
        self,
        model: str,
        batch_size: int = 1,
        max_tokens: int = 256,
        temperature: float = 0,  # defaults to 1
        **kwargs,  # top_p, top_k, etc.
    ) -> None:
        """Anthropic API wrapper.

        :param model: str
            Anthropic model e.g. 'claude-3-opus-20240229', 'claude-3-sonnet-20240229'
        :param max_tokens: int
            Maximum number of tokens to sample from the model
        :param temperature: float
            Sampling temperature
        :param kwargs: Any
            Additional model_args to pass to the API client
        """
        super().__init__()

        try:
            import anthropic
        except ModuleNotFoundError:
            raise Exception(
                "attempted to use 'anthropic' LM type, but package `anthropic` is not installed. \
please install anthropic via `pip install 'lm-eval[anthropic]'` or `pip install -e '.[anthropic]'`",
            )

        self.model = model
        # defaults to os.environ.get("ANTHROPIC_API_KEY")
        self.client = anthropic.Anthropic()
        self.temperature = temperature
        self.max_token = max_tokens
        self.tokenizer = self.client.get_tokenizer()
        self.kwargs = kwargs

    @property
    def max_gen_toks(self) -> int:
        return self.max_tokens

    def generate_until(self, requests) -> List[str]:
        try:
            import anthropic
        except ModuleNotFoundError:
            raise Exception(
                "attempted to use 'anthropic' LM type, but package `anthropic` is not installed. \
please install anthropic via `pip install 'lm-eval[anthropic]'` or `pip install -e '.[anthropic]'`",
            )

        if not requests:
            return []

        _requests: List[Tuple[str, dict]] = [req.args for req in requests]

        res = []
        for request in tqdm(_requests):
            try:
                inp = request[0]
                request_args = request[1]
                # generation_kwargs
                until = request_args.get("until")
                max_tokens = request_args.get("max_gen_toks", self.max_length)
                temperature = request_args.get("temperature", self.temperature)
                response = anthropic_chat(
                    client=self.client,
                    model=self.model,
                    prompt=inp,
                    max_tokens=max_tokens,
                    temperature=temperature,  # TODO: implement non-greedy sampling for Anthropic
                    stop=until,  # type: ignore
                    **self.kwargs,
                )
                res.append(response)

                self.cache_hook.add_partial("generate_until", request, response)
            except anthropic.APIConnectionError as e:  # type: ignore # noqa: F821
                eval_logger.critical(f"Server unreachable: {e.__cause__}")
                break
            except anthropic.APIStatusError as e:  # type: ignore # noqa: F821
                eval_logger.critical(f"API error {e.status_code}: {e.message}")
                break

        return res