evaluator.py 24.3 KB
Newer Older
Rayyyyy's avatar
Rayyyyy committed
1
import itertools
Rayyyyy's avatar
Rayyyyy committed
2
3
import json
import logging
Rayyyyy's avatar
Rayyyyy committed
4
import random
Rayyyyy's avatar
Rayyyyy committed
5
6
7
8
9
10
11
12
13
import time
from collections import defaultdict
from typing import TYPE_CHECKING, List, Optional, Union

import numpy as np
import torch

import lm_eval.api.metrics
import lm_eval.api.registry
Rayyyyy's avatar
Rayyyyy committed
14
import lm_eval.models
Rayyyyy's avatar
Rayyyyy committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from lm_eval.caching.cache import delete_cache
from lm_eval.evaluator_utils import (
    consolidate_results,
    get_sample_size,
    get_task_list,
    prepare_print_tasks,
    print_writeout,
    run_task_tests,
)
from lm_eval.logging.utils import add_env_info, get_git_commit_hash
from lm_eval.tasks import TaskManager, get_task_dict
from lm_eval.utils import (
    eval_logger,
    handle_non_serializable,
    hash_string,
    positional_deprecated,
    simple_parse_args_string,
)


if TYPE_CHECKING:
    from lm_eval.api.model import LM
    from lm_eval.tasks import Task
Rayyyyy's avatar
Rayyyyy committed
38
39
40
41
42


@positional_deprecated
def simple_evaluate(
    model,
Rayyyyy's avatar
Rayyyyy committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
    model_args: Optional[Union[str, dict]] = None,
    tasks: Optional[List[Union[str, dict, object]]] = None,
    num_fewshot: Optional[int] = None,
    batch_size: Optional[int] = None,
    max_batch_size: Optional[int] = None,
    device: Optional[str] = None,
    use_cache: Optional[str] = None,
    cache_requests: bool = False,
    rewrite_requests_cache: bool = False,
    delete_requests_cache: bool = False,
    limit: Optional[Union[int, float]] = None,
    bootstrap_iters: int = 100000,
    check_integrity: bool = False,
    write_out: bool = False,
    log_samples: bool = True,
    gen_kwargs: Optional[str] = None,
    task_manager: Optional[TaskManager] = None,
    verbosity: str = "INFO",
    predict_only: bool = False,
    random_seed: int = 0,
    numpy_random_seed: int = 1234,
    torch_random_seed: int = 1234,
    fewshot_random_seed: int = 1234,
Rayyyyy's avatar
Rayyyyy committed
66
67
68
69
70
):
    """Instantiate and evaluate a model on a list of tasks.

    :param model: Union[str, LM]
        Name of model or LM object, see lm_eval.models.get_model
Rayyyyy's avatar
Rayyyyy committed
71
72
    :param model_args: Optional[str, dict]
        String or dict arguments for each model class, see LM.create_from_arg_string and LM.create_from_arg_object.
Rayyyyy's avatar
Rayyyyy committed
73
        Ignored if `model` argument is a LM object.
Rayyyyy's avatar
Rayyyyy committed
74
    :param tasks: list[Union[str, dict, Task]]
Rayyyyy's avatar
Rayyyyy committed
75
76
77
78
79
80
81
82
83
        List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
    :param num_fewshot: int
        Number of examples in few-shot context
    :param batch_size: int or str, optional
        Batch size for model
    :param max_batch_size: int, optional
        Maximal batch size to try with automatic batch size detection
    :param device: str, optional
        PyTorch device (e.g. "cpu" or "cuda:0") for running models
Rayyyyy's avatar
Rayyyyy committed
84
85
86
87
88
89
90
91
    :param use_cache: str, optional
        A path to a sqlite db file for caching model responses. `None` if not caching.
    :param cache_requests: bool, optional
        Speed up evaluation by caching the building of dataset requests. `None` if not caching.
    :param rewrite_requests_cache: bool, optional
        Rewrites all of the request cache if set to `True`. `None` if not desired.
    :param delete_requests_cache: bool, optional
        Deletes all of the request cache if set to `True`. `None` if not desired.
Rayyyyy's avatar
Rayyyyy committed
92
93
94
95
96
97
98
    :param limit: int or float, optional
        Limit the number of examples per task (only use this for testing), If <1, limit is a percentage of the total number of examples.
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
    :param check_integrity: bool
        Whether to run the relevant part of the test suite for the tasks
    :param write_out: bool
Rayyyyy's avatar
Rayyyyy committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
    :param gen_kwargs: str
        String arguments for model generation
        Ignored for all tasks with loglikelihood output_type
    :param predict_only: bool
        If true only model outputs will be generated and returned. Metrics will not be evaluated
    :param random_seed: int
        Random seed for python's random module. If set to None, the seed will not be set.
    :param numpy_random_seed: int
        Random seed for numpy. If set to None, the seed will not be set.
    :param torch_random_seed: int
        Random seed for torch. If set to None, the seed will not be set.
    :param fewshot_random_seed: int
        Random seed for fewshot sampler random generator. If set to None, the seed of generator will be set to None.

Rayyyyy's avatar
Rayyyyy committed
116
117
118
    :return
        Dictionary of results
    """
Rayyyyy's avatar
Rayyyyy committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
    eval_logger.setLevel(getattr(logging, f"{verbosity}"))
    start_date = time.time()

    if delete_requests_cache:
        eval_logger.info("Deleting requests cache...")
        delete_cache()

    seed_message = []
    if random_seed is not None:
        # See https://github.com/EleutherAI/lm-evaluation-harness/pull/1412
        seed_message.append(f"Setting random seed to {random_seed}")
        random.seed(random_seed)

    if numpy_random_seed is not None:
        seed_message.append(f"Setting numpy seed to {numpy_random_seed}")
        np.random.seed(numpy_random_seed)

    if torch_random_seed is not None:
        seed_message.append(f"Setting torch manual seed to {torch_random_seed}")
        torch.manual_seed(torch_random_seed)

    if seed_message:
        eval_logger.info(" | ".join(seed_message))

    if tasks is None:
        tasks = []
    if len(tasks) == 0:
        raise ValueError(
            "No tasks specified, or no tasks found. Please verify the task names."
        )
Rayyyyy's avatar
Rayyyyy committed
149

Rayyyyy's avatar
Rayyyyy committed
150
151
152
153
154
155
156
157
    if gen_kwargs is not None:
        gen_kwargs = simple_parse_args_string(gen_kwargs)
        eval_logger.warning(
            "generation_kwargs specified through cli, these settings will update set parameters in yaml tasks. "
            "Ensure 'do_sample=True' for non-greedy decoding!"
        )
        if gen_kwargs == "":
            gen_kwargs = None
Rayyyyy's avatar
Rayyyyy committed
158
159
160

    if isinstance(model, str):
        if model_args is None:
Rayyyyy's avatar
Rayyyyy committed
161
            eval_logger.warning("model_args not specified. Using defaults.")
Rayyyyy's avatar
Rayyyyy committed
162
            model_args = ""
Rayyyyy's avatar
Rayyyyy committed
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

        if isinstance(model_args, dict):
            eval_logger.info(
                f"Initializing {model} model, with arguments: {model_args}"
            )
            lm = lm_eval.api.registry.get_model(model).create_from_arg_obj(
                model_args,
                {
                    "batch_size": batch_size,
                    "max_batch_size": max_batch_size,
                    "device": device,
                },
            )

        else:
            eval_logger.info(
                f"Initializing {model} model, with arguments: {simple_parse_args_string(model_args)}"
            )
            lm = lm_eval.api.registry.get_model(model).create_from_arg_string(
                model_args,
                {
                    "batch_size": batch_size,
                    "max_batch_size": max_batch_size,
                    "device": device,
                },
            )
Rayyyyy's avatar
Rayyyyy committed
189
    else:
Rayyyyy's avatar
Rayyyyy committed
190
191
192
        if not isinstance(model, lm_eval.api.model.LM):
            raise TypeError
        eval_logger.info("Using pre-initialized model")
Rayyyyy's avatar
Rayyyyy committed
193
194
        lm = model

Rayyyyy's avatar
Rayyyyy committed
195
196
197
    if use_cache is not None:
        eval_logger.info(f"Using cache at {use_cache + '_rank' + str(lm.rank) + '.db'}")
        lm = lm_eval.api.model.CachingLM(
Rayyyyy's avatar
Rayyyyy committed
198
            lm,
Rayyyyy's avatar
Rayyyyy committed
199
200
201
202
203
            use_cache
            # each rank receives a different cache db.
            # necessary to avoid multiple writes to cache at once
            + "_rank"
            + str(lm.rank)
Rayyyyy's avatar
Rayyyyy committed
204
205
206
            + ".db",
        )

Rayyyyy's avatar
Rayyyyy committed
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
    if task_manager is None:
        task_manager = TaskManager(verbosity)

    task_dict = get_task_dict(tasks, task_manager)
    for task_name in task_dict.keys():
        task_obj = task_dict[task_name]
        if isinstance(task_obj, tuple):
            _, task_obj = task_obj
            if task_obj is None:
                continue

        if task_obj.get_config("output_type") == "generate_until":
            if gen_kwargs is not None:
                task_obj.set_config(
                    key="generation_kwargs", value=gen_kwargs, update=True
                )

        if predict_only:
            log_samples = True
            eval_logger.info(
                f"Processing {task_name} in output-only mode. Metrics will not be calculated!"
            )
            # we have to change the class properties post-hoc. This is pretty hacky.
            task_obj.override_metric(metric_name="bypass")

        # override tasks' fewshot values to the provided num_fewshot arg value
        # except if tasks have it set to 0 manually in their configs--then we should never overwrite that
        if num_fewshot is not None:
            if (default_num_fewshot := task_obj.get_config("num_fewshot")) == 0:
                eval_logger.info(
                    f"num_fewshot has been set to 0 for {task_name} in its config. Manual configuration will be ignored."
                )
            else:
                eval_logger.warning(
                    f"Overwriting default num_fewshot of {task_name} from {default_num_fewshot} to {num_fewshot}"
                )
                task_obj.set_config(key="num_fewshot", value=num_fewshot)
            task_obj.set_fewshot_seed(seed=fewshot_random_seed)
            eval_logger.info(
                f"Setting fewshot random generator seed to {fewshot_random_seed}"
            )
        else:
            # if num_fewshot not provided, and the task does not define a default one, default to 0
            if (default_num_fewshot := task_obj.get_config("num_fewshot")) is None:
                task_obj.set_config(key="num_fewshot", value=0)
Rayyyyy's avatar
Rayyyyy committed
252
253
254
255
256
257
258
259

    if check_integrity:
        run_task_tests(task_list=tasks)

    results = evaluate(
        lm=lm,
        task_dict=task_dict,
        limit=limit,
Rayyyyy's avatar
Rayyyyy committed
260
261
        cache_requests=cache_requests,
        rewrite_requests_cache=rewrite_requests_cache,
Rayyyyy's avatar
Rayyyyy committed
262
263
        bootstrap_iters=bootstrap_iters,
        write_out=write_out,
Rayyyyy's avatar
Rayyyyy committed
264
265
        log_samples=log_samples,
        verbosity=verbosity,
Rayyyyy's avatar
Rayyyyy committed
266
267
    )

Rayyyyy's avatar
Rayyyyy committed
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
    if lm.rank == 0:
        if isinstance(model, str):
            model_name = model
        elif hasattr(model, "config") and hasattr(model.config, "_name_or_path"):
            model_name = model.config._name_or_path
        else:
            model_name = type(model).__name__

        # add info about the model and few shot config
        results["config"] = {
            "model": model_name,
            "model_args": model_args,
        }
        # add more detailed model info if available
        if isinstance(lm, lm_eval.models.huggingface.HFLM):
            results["config"].update(lm.get_model_info())
        # add info about execution
        results["config"].update(
            {
                "batch_size": batch_size,
                "batch_sizes": (
                    list(lm.batch_sizes.values()) if hasattr(lm, "batch_sizes") else []
                ),
                "device": device,
                "use_cache": use_cache,
                "limit": limit,
                "bootstrap_iters": bootstrap_iters,
                "gen_kwargs": gen_kwargs,
                "random_seed": random_seed,
                "numpy_seed": numpy_random_seed,
                "torch_seed": torch_random_seed,
                "fewshot_seed": fewshot_random_seed,
            }
        )
        results["git_hash"] = get_git_commit_hash()
        results["date"] = start_date
        add_env_info(results)  # additional environment info to results
        return results
    else:
        return None
Rayyyyy's avatar
Rayyyyy committed
308
309
310
311


@positional_deprecated
def evaluate(
Rayyyyy's avatar
Rayyyyy committed
312
    lm: "LM",
Rayyyyy's avatar
Rayyyyy committed
313
    task_dict,
Rayyyyy's avatar
Rayyyyy committed
314
315
316
317
318
319
320
    limit: Optional[int] = None,
    cache_requests: bool = False,
    rewrite_requests_cache: bool = False,
    bootstrap_iters: Optional[int] = 100000,
    write_out: bool = False,
    log_samples: bool = True,
    verbosity: str = "INFO",
Rayyyyy's avatar
Rayyyyy committed
321
322
323
324
325
326
):
    """Instantiate and evaluate a model on a list of tasks.

    :param lm: obj
        Language Model
    :param task_dict: dict[str, Task]
Rayyyyy's avatar
Rayyyyy committed
327
        Dictionary of tasks. Tasks will be taken to have name type(task).config.task .
Rayyyyy's avatar
Rayyyyy committed
328
329
330
331
332
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
    :param write_out: bool
Rayyyyy's avatar
Rayyyyy committed
333
334
335
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
Rayyyyy's avatar
Rayyyyy committed
336
337
338
339
    :return
        Dictionary of results
    """

Rayyyyy's avatar
Rayyyyy committed
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
    eval_logger.setLevel(getattr(logging, f"{verbosity}"))

    # tracks all Instances/requests a model must generate output on.
    requests = defaultdict(list)
    # stores the amount to pad out reqs per req. type so that
    # number of fwd passes per distributed rank is equal
    padding_requests = defaultdict(int)

    # get lists of group hierarchy and each type of request
    task_hierarchy, eval_tasks = get_task_list(task_dict)
    if not log_samples:
        if not all(
            "bypass" not in getattr(task_output.task, "_metric_fn_list", {}).keys()
            for task_output in eval_tasks
        ):
            raise ValueError("log_samples must be True for 'bypass' metric-only tasks")
    for task_output in eval_tasks:
        task: Task = task_output.task
        limit = get_sample_size(task, limit)
        task.build_all_requests(
            limit=limit,
            rank=lm.rank,
            world_size=lm.world_size,
            cache_requests=cache_requests,
            rewrite_requests_cache=rewrite_requests_cache,
Rayyyyy's avatar
Rayyyyy committed
365
        )
Rayyyyy's avatar
Rayyyyy committed
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
        eval_logger.debug(
            f"Task: {task_output.task_name}; number of requests on this rank: {len(task.instances)}"
        )
        if write_out:
            print_writeout(task)
        # aggregate Instances by LM method requested to get output.
        for instance in task.instances:
            reqtype = instance.request_type
            requests[reqtype].append(instance)

        if lm.world_size > 1:
            instances_rnk = torch.tensor(len(task._instances), device=lm.device)
            gathered_item = (
                lm.accelerator.gather(instances_rnk).cpu().detach().numpy().tolist()
            )
            # "multiple_choice" task types dispatch (several) "loglikelihood" request types
            reqtype = (
                "loglikelihood"
                if task.OUTPUT_TYPE == "multiple_choice"
                else task.OUTPUT_TYPE
            )
            # compute number of pseudo-batches to pad with (FSDP/DDP require even batches among ranks)
            numpad = max(gathered_item) - gathered_item[lm.rank]
            # todo: may not account for padding in cases like SquadV2 which has multiple req types
            padding_requests[reqtype] += numpad
Rayyyyy's avatar
Rayyyyy committed
391

Rayyyyy's avatar
Rayyyyy committed
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
    ### Run LM on inputs, get all outputs ###
    # execute each type of request
    for reqtype, reqs in requests.items():
        eval_logger.info(f"Running {reqtype} requests")
        # create `K` copies of each request `req` based off `K = req.repeats`
        cloned_reqs = []
        for req in reqs:
            cloned_reqs.extend([req] * req.repeats)

        if (lm.world_size > 1) and (padding_requests[reqtype] > 0):
            for _ in range(padding_requests[reqtype]):
                cloned_reqs.extend([req] * req.repeats)

        # run requests through model
        resps = getattr(lm, reqtype)(cloned_reqs)

        # put responses from model into a list of length K for each request.
        for x, req in zip(resps, cloned_reqs):
            req.resps.append(x)

        if lm.world_size > 1:
            lm.accelerator.wait_for_everyone()

    RANK = lm.rank
    WORLD_SIZE = lm.world_size
    ### Postprocess outputs ###
    # TODO: del model here, maybe (idea: allow user to specify device of e.g. reward model separately)
    for task_output in eval_tasks:
        task = task_output.task
        task.apply_filters()

        ### Collect values of metrics on all datapoints ###
        # # unpack results and sort back in order and return control to Task
        # TODO: make it possible to use a different metric per filter
        # Pre-process task.instances to group by doc_id
        instances_by_doc_id = defaultdict(list)
        for instance in task.instances:
            instances_by_doc_id[instance.doc_id].append(instance)
        # Sort instances within each group
        for instances in instances_by_doc_id.values():
            instances.sort(key=lambda x: x.idx)
        # iterate over different filters used
        for filter_key in task.instances[0].filtered_resps.keys():
            doc_iterator = task.doc_iterator(
                rank=RANK, limit=limit, world_size=WORLD_SIZE
Rayyyyy's avatar
Rayyyyy committed
437
            )
Rayyyyy's avatar
Rayyyyy committed
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
            for doc_id, doc in doc_iterator:
                requests = instances_by_doc_id[doc_id]
                metrics = task.process_results(
                    doc, [req.filtered_resps[filter_key] for req in requests]
                )
                if log_samples:
                    target = task.doc_to_target(doc)
                    example = {
                        "doc_id": doc_id,
                        "doc": doc,
                        "target": target,
                        "arguments": [req.args for req in requests],
                        "resps": [req.resps for req in requests],
                        "filtered_resps": [
                            req.filtered_resps[filter_key] for req in requests
                        ],
                        "doc_hash": hash_string(
                            json.dumps(
                                requests[0].doc,
                                indent=2,
                                default=handle_non_serializable,
                                ensure_ascii=False,
                            )
                        ),
                        "prompt_hash": hash_string(requests[0].arguments[0]),
                        "target_hash": hash_string(str(target)),
                    }
                    example.update(metrics)
                    task_output.logged_samples.append(example)
                for metric, value in metrics.items():
                    task_output.sample_metrics[(metric, filter_key)].append(value)

    if WORLD_SIZE > 1:
        # if multigpu, then gather data across all ranks to rank 0
        # first gather logged samples across all ranks
        for task_output in eval_tasks:
            if log_samples:
                # for task_name, task_samples in list(samples.items()):
                full_samples = [None] * WORLD_SIZE if RANK == 0 else None
                torch.distributed.gather_object(
                    obj=task_output.logged_samples,
                    object_gather_list=full_samples,
                    dst=0,
                )
Rayyyyy's avatar
Rayyyyy committed
482

Rayyyyy's avatar
Rayyyyy committed
483
484
485
486
                if RANK == 0:
                    task_output.logged_samples = list(
                        itertools.chain.from_iterable(full_samples)
                    )
Rayyyyy's avatar
Rayyyyy committed
487

Rayyyyy's avatar
Rayyyyy committed
488
489
490
491
492
493
494
            # then collect metrics across all ranks
            for metrics in task_output.sample_metrics:
                metric_list = [None] * WORLD_SIZE if RANK == 0 else None
                torch.distributed.gather_object(
                    obj=task_output.sample_metrics[metrics],
                    object_gather_list=metric_list,
                    dst=0,
Rayyyyy's avatar
Rayyyyy committed
495
                )
Rayyyyy's avatar
Rayyyyy committed
496
497
498
                if RANK == 0:
                    task_output.sample_metrics[metrics] = list(
                        itertools.chain.from_iterable(metric_list)
Rayyyyy's avatar
Rayyyyy committed
499
500
                    )

Rayyyyy's avatar
Rayyyyy committed
501
502
503
504
505
506
507
    if RANK == 0:
        ### Aggregate results over all datapoints ###
        # aggregate results ; run bootstrap CIs
        for task_output in eval_tasks:
            task_output.calculate_aggregate_metric(bootstrap_iters=bootstrap_iters)
        results, samples, configs, versions, num_fewshot = consolidate_results(
            eval_tasks
Rayyyyy's avatar
Rayyyyy committed
508
509
        )

Rayyyyy's avatar
Rayyyyy committed
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
        ### Calculate group metrics ###
        if bool(results):
            for group, task_list in reversed(task_hierarchy.items()):
                if len(task_list) == 0:
                    # task_hierarchy entries are either
                    # `group_name: [subtask1, subtask2, ...]`
                    # or `task_name: []`.
                    # we only want to operate on groups here.
                    continue
                metric_list = list(
                    {
                        key
                        for task in task_list
                        for key in results[task].keys()
                        if "_stderr" not in key and key not in ["alias", "samples"]
                    }
                )
                for metric in metric_list:
                    stderr = "_stderr,".join(metric.split(","))

                    # gather metrics, sizes, and stderrs from subtasks
                    metrics = [
                        results[task][metric]
                        for task in task_list
                        if metric in results[task]
                    ]  # TODO: copy?
                    stderrs = [
                        results[task][stderr]
                        for task in task_list
                        if stderr in results[task]
                    ]
                    sizes = [
                        results[task]["samples"]
                        for task in task_list
                        if metric in results[task]
Rayyyyy's avatar
Rayyyyy committed
545
546
                    ]

Rayyyyy's avatar
Rayyyyy committed
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
                    # compute group's pooled metric and stderr
                    results[group][
                        metric
                    ] = lm_eval.api.metrics.aggregate_subtask_metrics(metrics, sizes)
                    # TODO: calculate grouped metric using aggregation fn
                    if "N/A" in stderrs:
                        results[group][stderr] = "N/A"
                    else:
                        results[group][
                            stderr
                        ] = lm_eval.api.metrics.pooled_sample_stderr(stderrs, sizes)
                        # TODO: allow GroupConfigs to choose which variance formula is used, for back-compatibility
                        # To use the old (likely incorrect) variance formula, comment out the above and uncomment this line:
                        # results[group][stderr] = lm_eval.api.metrics.combined_sample_stderr(stderrs, sizes, metrics=metrics)

                    results[group]["samples"] = sum(sizes)

        results_agg = defaultdict(dict)
        groups_agg = defaultdict(dict)
        all_tasks_list = list(task_hierarchy.keys())
        while True:
            add_tasks_list = list(k for k in results_agg.keys())
            left_tasks_list = sorted(list(set(all_tasks_list) - set(add_tasks_list)))
            if len(left_tasks_list) == 0:
                break

            _task_hierarchy = {
                k: v for k, v in task_hierarchy.items() if k in left_tasks_list
            }
            _results_agg, _groups_agg = prepare_print_tasks(_task_hierarchy, results)

            results_agg = {**results_agg, **_results_agg}
            groups_agg = {**groups_agg, **_groups_agg}

        for group_name, task_list in task_hierarchy.items():
            if task_list:
                num_fewshot[group_name] = num_fewshot[
                    task_list[0]
                ]  # TODO: validate this

        results_dict = {
            "results": dict(results_agg.items()),
            **({"groups": dict(groups_agg.items())} if bool(groups_agg) else {}),
            "group_subtasks": dict(reversed(task_hierarchy.items())),
            "configs": dict(sorted(configs.items())),
            "versions": dict(sorted(versions.items())),
            "n-shot": dict(sorted(num_fewshot.items())),
            "n-samples": {
                task_output.task_name: {
                    "original": len(task_output.task.eval_docs),
                    "effective": min(
                        limit if limit else len(task_output.task.eval_docs),
                        len(task_output.task.eval_docs),
                    ),
                }
                for task_output in eval_tasks
            },
        }
        if log_samples:
            results_dict["samples"] = dict(samples)

        return results_dict
Rayyyyy's avatar
Rayyyyy committed
609

Rayyyyy's avatar
Rayyyyy committed
610
611
    else:
        return None
Rayyyyy's avatar
Rayyyyy committed
612
613


Rayyyyy's avatar
Rayyyyy committed
614
615
616
617
618
619
def request_caching_arg_to_dict(cache_requests: str) -> dict:
    request_caching_args = {
        "cache_requests": cache_requests in {"true", "refresh"},
        "rewrite_requests_cache": cache_requests == "refresh",
        "delete_requests_cache": cache_requests == "delete",
    }
Rayyyyy's avatar
Rayyyyy committed
620

Rayyyyy's avatar
Rayyyyy committed
621
    return request_caching_args