test_train_utils.py 3.63 KB
Newer Older
Rayyyyy's avatar
Rayyyyy committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.

from unittest.mock import patch
import pytest

import torch

import os
import shutil

from llama_recipes.utils.train_utils import train

TEMP_OUTPUT_DIR = os.getcwd() + "/tmp"

@pytest.fixture(scope="session")
def temp_output_dir():
    # Create the directory during the session-level setup
    temp_output_dir = "tmp"
    os.mkdir(os.path.join(os.getcwd(), temp_output_dir))
    yield temp_output_dir
    # Delete the directory during the session-level teardown
    shutil.rmtree(temp_output_dir)


@patch("llama_recipes.utils.train_utils.MemoryTrace")
@patch("llama_recipes.utils.train_utils.nullcontext")
@patch("llama_recipes.utils.train_utils.torch.cuda.amp.GradScaler")
@patch("llama_recipes.utils.train_utils.torch.cuda.amp.autocast")
def test_gradient_accumulation(autocast, scaler, nullcontext, mem_trace, mocker):

    model = mocker.MagicMock(name="model")
    model().loss.__truediv__().detach.return_value = torch.tensor(1)
    mock_tensor = mocker.MagicMock(name="tensor")
    batch = {"input": mock_tensor}
    train_dataloader = [batch, batch, batch, batch, batch]
    eval_dataloader = None
    tokenizer = mocker.MagicMock()
    optimizer = mocker.MagicMock()
    lr_scheduler = mocker.MagicMock()
    gradient_accumulation_steps = 1
    train_config = mocker.MagicMock()
    train_config.enable_fsdp = False
    train_config.use_fp16 = False
    train_config.run_validation = False
    train_config.gradient_clipping = False
    train_config.max_train_step = 0
    train_config.max_eval_step = 0
    train_config.save_metrics = False

    train(
        model,
        train_dataloader,
        eval_dataloader,
        tokenizer,
        optimizer,
        lr_scheduler,
        gradient_accumulation_steps,
        train_config,
    )

    assert optimizer.zero_grad.call_count == 5
    optimizer.zero_grad.reset_mock()

    assert nullcontext.call_count == 5
    nullcontext.reset_mock()

    assert autocast.call_count == 0

    gradient_accumulation_steps = 2
    train_config.use_fp16 = True
    train(
        model,
        train_dataloader,
        eval_dataloader,
        tokenizer,
        optimizer,
        lr_scheduler,
        gradient_accumulation_steps,
        train_config,
    )
    assert optimizer.zero_grad.call_count == 3
    assert nullcontext.call_count == 0
    assert autocast.call_count == 5

def test_save_to_json(temp_output_dir, mocker):
    model = mocker.MagicMock(name="model")
    model().loss.__truediv__().detach.return_value = torch.tensor(1)
    mock_tensor = mocker.MagicMock(name="tensor")
    batch = {"input": mock_tensor}
    train_dataloader = [batch, batch, batch, batch, batch]
    eval_dataloader = None
    tokenizer = mocker.MagicMock()
    optimizer = mocker.MagicMock()
    lr_scheduler = mocker.MagicMock()
    gradient_accumulation_steps = 1
    train_config = mocker.MagicMock()
    train_config.enable_fsdp = False
    train_config.use_fp16 = False
    train_config.run_validation = False
    train_config.gradient_clipping = False
    train_config.save_metrics = True
    train_config.max_train_step = 0
    train_config.max_eval_step = 0
    train_config.output_dir = temp_output_dir
    train_config.use_profiler = False

    results = train(
        model,
        train_dataloader,
        eval_dataloader,
        tokenizer,
        optimizer,
        lr_scheduler,
        gradient_accumulation_steps,
        train_config,
        local_rank=0
    )

    assert results["metrics_filename"] not in ["", None]
    assert os.path.isfile(results["metrics_filename"])