"...resnet50_tensorflow.git" did not exist on "706a0bd9375e2e6752ba777abd5837748aac36cc"
Commit 405b3897 authored by chenych's avatar chenych
Browse files

Add stream client

parent 00f38043
......@@ -2,6 +2,7 @@ import json
import argparse
import requests
import configparser
from typing import Iterable, List
......@@ -57,18 +58,24 @@ if __name__ == "__main__":
api_url = f"http://localhost:8888/{func}"
if stream_chat:
response = requests.get(api_url, headers=headers, data=json_str.encode(
"utf-8"), verify=False, stream=stream_chat)
headers={
"Content-Type": "text/event-stream",
"Cache-Control": "no-cache",
"Connection": "keep-alive"
}
response = requests.post(api_url, headers=headers, data=json_str.encode(
"utf-8"), verify=False, stream=True)
num_printed_lines = 0
for h in get_streaming_response(response):
clear_line(num_printed_lines)
num_printed_lines = 0
# clear_line(num_printed_lines)
for i, line in enumerate(h):
num_printed_lines += 1
print(f"Beam candidate {i}: {line!r}", flush=True)
print(f"{line!r}", flush=True)
else:
response = requests.get(api_url, headers=headers, data=json_str.encode(
"utf-8"), verify=False, stream=stream_chat)
headers = {"Content-Type": "application/json"}
response = requests.post(api_url, headers=headers, data=json_str.encode(
"utf-8"), verify=False)
output = get_response(response)
for i, line in enumerate(output):
print(f"Beam candidate {i}: {line!r}", flush=True)
print(f"Beam candidate {i}: {line!r}", flush=True)
\ No newline at end of file
"""Example Python client for vllm.entrypoints.api_server"""
import argparse
import json
from typing import Iterable, List
import requests
def clear_line(n: int = 1) -> None:
LINE_UP = '\033[1A'
LINE_CLEAR = '\x1b[2K'
for _ in range(n):
print(LINE_UP, end=LINE_CLEAR, flush=True)
def post_http_request(query: str, api_url: str, n: int = 1,
stream: bool = False) -> requests.Response:
headers = {"User-Agent": "Test Client"}
pload = {
"query": query,
"n": n,
"use_beam_search": True,
"temperature": 0.0,
"max_tokens": 16,
"stream": stream,
}
response = requests.post(api_url, headers=headers, json=pload, stream=True)
return response
def get_streaming_response(response: requests.Response) -> Iterable[List[str]]:
for chunk in response.iter_lines(chunk_size=8192, decode_unicode=False,
delimiter=b"\0"):
if chunk:
data = json.loads(chunk.decode("utf-8"))
output = data["text"]
yield output
def get_response(response: requests.Response) -> List[str]:
data = json.loads(response.content)
output = data["text"]
return output
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="localhost")
parser.add_argument("--port", type=int, default=8888)
parser.add_argument("--n", type=int, default=4)
parser.add_argument("--query", type=str, default="San Francisco is a")
parser.add_argument("--stream", action="store_true")
args = parser.parse_args()
query = args.query
api_url = f"http://{args.host}:{args.port}/generate"
n = args.n
stream = args.stream
print(f"Prompt: {query!r}\n", flush=True)
response = post_http_request(query, api_url, n, stream)
if stream:
num_printed_lines = 0
for h in get_streaming_response(response):
clear_line(num_printed_lines)
num_printed_lines = 0
for i, line in enumerate(h):
num_printed_lines += 1
print(f"Beam candidate {i}: {line!r}", flush=True)
else:
output = get_response(response)
for i, line in enumerate(output):
print(f"Beam candidate {i}: {line!r}", flush=True)
\ No newline at end of file
......@@ -11,7 +11,6 @@ from aiohttp import web
from transformers import AutoModelForCausalLM, AutoTokenizer
COMMON = {
"<光合组织登记网址>": "https://www.hieco.com.cn/partner?from=timeline",
"<官网>": "https://www.sugon.com/after_sale/policy?sh=1",
......@@ -259,12 +258,10 @@ def vllm_inference(bind_port, model, tokenizer, sampling_params):
def vllm_inference_stream(bind_port, model, tokenizer, sampling_params):
'''启动 Web 服务器,接收 HTTP 请求,并通过调用本地的 LLM 推理服务生成响应. '''
from typing import AsyncGenerator
from fastapi.responses import StreamingResponse
async def inference(request):
input_json = await request.json()
input_json = await request.json()
prompt = input_json['query']
# history = input_json['history']
......@@ -272,28 +269,27 @@ def vllm_inference_stream(bind_port, model, tokenizer, sampling_params):
logger.info("****************** use vllm ******************")
## generate template
input_text = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True)
messages, tokenize=False, add_generation_prompt=True)
logger.info(f"The input_text is {input_text}")
assert model is not None
request_id = str(uuid.uuid4().hex)
results_generator = model.generate(input_text, sampling_params=sampling_params, request_id=request_id)
# Streaming case
async def stream_results() -> AsyncGenerator[bytes, None]:
# final_output = None
logger.info("****************** in stream_results *****************")
async for request_output in results_generator:
# final_output = request_output
text_outputs = [output.text for output in request_output.outputs]
ret = {"text": text_outputs}
print(ret)
yield (json.dumps(ret) + "\0").encode("utf-8")
logger.info("****************** in chat stream *****************")
return StreamingResponse(stream_results())
logger.info("****************** in stream chat ******************")
response = web.StreamResponse()
await response.prepare(request)
text_outputs = None
async for request_output in results_generator:
prompt = request_output.prompt
text_outputs = [output.text for output in request_output.outputs]
ret = {"text": text_outputs}
await response.write((json.dumps(ret)+"\0").encode("utf-8"))
response.write_eof()
return response
app = web.Application()
app.add_routes([web.get('/vllm_inference_stream', inference)])
app.add_routes([web.post('/vllm_inference_stream', inference)])
web.run_app(app, host='0.0.0.0', port=bind_port)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment