feature_database.py 16.9 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
import argparse
import fitz
import re
import os
import time
import pandas as pd
import hashlib
import textract
import shutil
import configparser
chenych's avatar
update  
chenych committed
11

chenych's avatar
chenych committed
12
13
14
15
16
17
18
19
20
from multiprocessing import Pool
from typing import List
from loguru import logger
from BCEmbedding.tools.langchain import BCERerank
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores.faiss import FAISS
from torch.cuda import empty_cache
from bs4 import BeautifulSoup
chenych's avatar
update  
chenych committed
21
22
from .elastic_keywords_search import ElasticKeywordsSearch
from .retriever import Retriever
chenych's avatar
chenych committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475


class DocumentName:

    def __init__(self, directory: str, name: str, category: str):
        self.directory = directory
        self.prefix = name.replace('/', '_')
        self.basename = os.path.basename(name)
        self.origin_path = os.path.join(directory, name)
        self.copy_path = ''
        self._category = category
        self.status = True
        self.message = ''

    def __str__(self):
        return '{},{},{},{}\n'.format(self.basename, self.copy_path, self.status,
                                      self.message)


class DocumentProcessor:

    def __init__(self):
        self.image_suffix = ['.jpg', '.jpeg', '.png', '.bmp']
        self.md_suffix = '.md'
        self.text_suffix = ['.txt', '.text']
        self.excel_suffix = ['.xlsx', '.xls', '.csv']
        self.pdf_suffix = '.pdf'
        self.ppt_suffix = '.pptx'
        self.html_suffix = ['.html', '.htm', '.shtml', '.xhtml']
        self.word_suffix = ['.docx', '.doc']
        self.json_suffix = '.json'

    def md5(self, filepath: str):
        hash_object = hashlib.sha256()
        with open(filepath, 'rb') as file:
            chunk_size = 8192
            while chunk := file.read(chunk_size):
                hash_object.update(chunk)

        return hash_object.hexdigest()[0:8]

    def summarize(self, files: list):
        success = 0
        skip = 0
        failed = 0

        for file in files:
            if file.status:
                success += 1
            elif file.message == 'skip':
                skip += 1
            else:
                logger.info('{}文件异常, 异常信息: {} '.format(file.origin_path, file.message))
                failed += 1
        logger.info('解析{}文件,成功{}个,跳过{}个,异常{}个'.format(len(files), success,
                                                                   skip, failed))

    def read_file_type(self, filepath: str):
        filepath = filepath.lower()
        if filepath.endswith(self.pdf_suffix):
            return 'pdf'

        if filepath.endswith(self.md_suffix):
            return 'md'

        if filepath.endswith(self.ppt_suffix):
            return 'ppt'

        if filepath.endswith(self.json_suffix):
            return 'json'

        for suffix in self.image_suffix:
            if filepath.endswith(suffix):
                return 'image'

        for suffix in self.text_suffix:
            if filepath.endswith(suffix):
                return 'text'

        for suffix in self.word_suffix:
            if filepath.endswith(suffix):
                return 'word'

        for suffix in self.excel_suffix:
            if filepath.endswith(suffix):
                return 'excel'

        for suffix in self.html_suffix:
            if filepath.endswith(suffix):
                return 'html'

        return None

    def scan_directory(self, repo_dir: str):
        documents = []
        for directory, _, names in os.walk(repo_dir):
            for name in names:
                category = self.read_file_type(name)
                if category is not None:
                    documents.append(
                        DocumentName(directory=directory, name=name, category=category))
        return documents

    def read(self, filepath: str):

        file_type = self.read_file_type(filepath)

        text = ''
        if not os.path.exists(filepath):
            return text

        try:
            if file_type == 'md' or file_type == 'text':
                text = []
                with open(filepath) as f:
                    txt = f.read()
                cleaned_txt = re.sub(r'\n\s*\n', '\n\n', txt)
                text.append(cleaned_txt)

            elif file_type == 'pdf':
                text += self.read_pdf(filepath)
                text = re.sub(r'\n\s*\n', '\n\n', text)

            elif file_type == 'excel':
                text += self.read_excel(filepath)

            elif file_type == 'word' or file_type == 'ppt':
                # https://stackoverflow.com/questions/36001482/read-doc-file-with-python
                # https://textract.readthedocs.io/en/latest/installation.html
                text = textract.process(filepath).decode('utf8')
                text = re.sub(r'\n\s*\n', '\n\n', text)
                if file_type == 'ppt':
                    text = text.replace('\n', ' ')

            elif file_type == 'html':
                with open(filepath) as f:
                    soup = BeautifulSoup(f.read(), 'html.parser')
                    text += soup.text

            elif filepath.endswith('.json'):
                # 打开JSON文件进行读取
                with open(filepath, 'r', encoding='utf-8') as file:
                    # 读取文件的所有行
                    text = file.readlines()

        except Exception as e:
            logger.error((filepath, str(e)))
            return '', e

        return text, None

    def read_excel(self, filepath: str):
        table = None
        if filepath.endswith('.csv'):
            table = pd.read_csv(filepath)
        else:
            table = pd.read_excel(filepath)
        if table is None:
            return ''
        json_text = table.dropna(axis=1).to_json(force_ascii=False)
        return json_text

    def read_pdf(self, filepath: str):
        # load pdf and serialize table

        text = ''
        with fitz.open(filepath) as pages:
            for page in pages:
                text += page.get_text()
                tables = page.find_tables()
                for table in tables:
                    tablename = '_'.join(
                        filter(lambda x: x is not None and 'Col' not in x,
                               table.header.names))
                    pan = table.to_pandas()
                    json_text = pan.dropna(axis=1).to_json(force_ascii=False)
                    text += tablename
                    text += '\n'
                    text += json_text
                    text += '\n'
        return text


def read_and_save(file: DocumentName, file_opr: DocumentProcessor):
    try:
        if os.path.exists(file.copy_path):
            # already exists, return
            logger.info('{} already processed, output file: {}, skip load'
                        .format(file.origin_path, file.copy_path))
            return

        logger.info('reading {}, would save to {}'.format(file.origin_path,
                                                          file.copy_path))
        content, error = file_opr.read(file.origin_path)
        if error is not None:
            logger.error('{} load error: {}'.format(file.origin_path, str(error)))
            return

        if content is None or len(content) < 1:
            logger.warning('{} empty, skip save'.format(file.origin_path))
            return

        cleaned_content = re.sub(r'\n\s*\n', '\n\n', content)
        with open(file.copy_path, 'w') as f:
            f.write(os.path.splitext(file.basename)[0] + '\n')
            f.write(cleaned_content)

    except Exception as e:
        logger.error(f"Error in read_and_save: {e}")


class FeatureDataBase:

    def __init__(self,
                 embeddings: HuggingFaceEmbeddings,
                 reranker: BCERerank,
                 reject_throttle=-1) -> None:

        # logger.debug('loading text2vec model..')
        self.embeddings = embeddings
        self.reranker = reranker
        self.compression_retriever = None
        self.rejecter = None
        self.retriever = None
        self.reject_throttle = reject_throttle if reject_throttle else -1

        self.text_splitter = RecursiveCharacterTextSplitter(
            chunk_size=1068, chunk_overlap=32)

    def get_documents(self, text, file):
        # if len(text) <= 1:
        #     return []
        chunks = self.text_splitter.create_documents(text)
        documents = []
        for chunk in chunks:
            # `source` is for return references
            # `read` is for LLM response
            chunk.metadata = {'source': file.basename, 'read': file.origin_path}
            documents.append(chunk)
        return documents

    def build_database(self, files: list, work_dir: str, file_opr: DocumentProcessor, elastic_search=None):

        feature_dir = os.path.join(work_dir, 'db_response')
        if not os.path.exists(feature_dir):
            os.makedirs(feature_dir)
        documents = []

        texts_for_es = []
        metadatas_for_es = []
        ids_for_es = []

        for i, file in enumerate(files):
            if not file.status:
                continue
            # 读取每个file
            text, error = file_opr.read(file.copy_path)

            if error is not None:
                file.status = False
                file.message = str(error)
                continue
            file.message = str(text[0])

            texts_for_es.append(text[0])
            metadatas_for_es.append({'source': file.basename, 'read': file.origin_path})
            ids_for_es.append(str(i))

            document = self.get_documents(text, file)
            documents += document
            logger.debug('Positive pipeline {}/{}.. register 《{}》 and split {} documents'
                         .format(i + 1, len(files), file.basename, len(document)))

        if elastic_search is not None:
            logger.debug('ES database pipeline register {} documents into database...'.format(len(texts_for_es)))

            es_time_before_register = time.time()
            elastic_search.add_texts(texts_for_es, metadatas=metadatas_for_es, ids=ids_for_es)
            es_time_after_register = time.time()
            logger.debug('ES database pipeline take time: {} '.format(es_time_after_register - es_time_before_register))

        logger.debug('Vector database pipeline register {} documents into database...'.format(len(documents)))

        ve_time_before_register = time.time()
        vs = FAISS.from_documents(documents, self.embeddings)
        vs.save_local(feature_dir)
        ve_time_after_register = time.time()
        logger.debug('Vector database pipeline take time: {} '.format(ve_time_after_register - ve_time_before_register))

    def preprocess(self, files: list, work_dir: str, file_opr: DocumentProcessor):

        preproc_dir = os.path.join(work_dir, 'preprocess')
        if not os.path.exists(preproc_dir):
            os.makedirs(preproc_dir)

        pool = Pool(processes=16)
        for idx, file in enumerate(files):
            if not os.path.exists(file.origin_path):
                file.status = False
                file.message = 'skip not exist'
                continue

            if file._category == 'image':
                file.status = False
                file.message = 'skip image'

            elif file._category in ['pdf', 'word', 'ppt', 'html', 'excel']:
                # read pdf/word/excel file and save to text format
                md5 = file_opr.md5(file.origin_path)
                file.copy_path = os.path.join(preproc_dir,
                                              '{}.text'.format(md5))
                pool.apply_async(read_and_save, args=(file, file_opr))

            elif file._category in ['md', 'text']:
                # rename text files to new dir
                file.copy_path = os.path.join(
                    preproc_dir,
                    file.origin_path.replace('/', '_')[-84:])
                try:
                    shutil.copy(file.origin_path, file.copy_path)
                    file.status = True
                    file.message = 'preprocessed'
                except Exception as e:
                    file.status = False
                    file.message = str(e)

            elif file._category in ['json']:
                file.status = True
                file.copy_path = file.origin_path
                file.message = 'preprocessed'

            else:
                file.status = False
                file.message = 'skip unknown format'
        pool.close()
        logger.debug('waiting for preprocess read finish..')
        pool.join()

        # check process result
        for file in files:
            if file._category in ['pdf', 'word', 'excel']:
                if os.path.exists(file.copy_path):
                    file.status = True
                    file.message = 'preprocessed'
                else:
                    file.status = False
                    file.message = 'read error'

    def initialize(self, files: list, work_dir: str, file_opr: DocumentProcessor, elastic_search=None):

        self.preprocess(files=files, work_dir=work_dir, file_opr=file_opr)
        self.build_database(files=files, work_dir=work_dir, file_opr=file_opr, elastic_search=elastic_search)

    def merge_db_response(self, faiss: FAISS, files: list, work_dir: str, file_opr: DocumentProcessor):

        feature_dir = os.path.join(work_dir, 'db_response')
        if not os.path.exists(feature_dir):
            os.makedirs(feature_dir)
        documents = []
        for i, file in enumerate(files):
            logger.debug('{}/{}.. register 《{}》 into database...'.format(i + 1, len(files), file.basename))
            if not file.status:
                continue
            # 读取每个file
            text, error = file_opr.read(file.copy_path)

            if error is not None:
                file.status = False
                file.message = str(error)
                continue
            logger.info(str(len(text)), text, str(text[0]))
            file.message = str(text[0])
            # file.message = str(len(text))

            # logger.info('{} content length {}'.format(
            # file._category, len(text)))

            documents += self.get_documents(text, file)

        if documents:
            vs = FAISS.from_documents(documents, self.embeddings)
            if faiss:
                faiss.merge_from(vs)
                faiss.save_local(feature_dir)
            else:
                vs.save_local(feature_dir)


def test_reject(retriever: Retriever):
    """Simple test reject pipeline."""

    real_questions = [
        '姚明是谁?',
        'CBBA是啥?',
        '差多少嘞?',
        'cnn 的全称是什么?',
        'transformer啥意思?',
        '成都有什么好吃的推荐?',
        '树博士是什么?',
        '白马非马啥意思?',
        'mmpose 如何安装?',
        '今天天气如何?',
        '写一首五言律诗?',
        '先有鸡还是先有蛋?',
        '如何在Gromacs中进行蛋白质的动态模拟?',
        'wy-vSphere 7 海光平台兼容补丁?',
        '在Linux系统中,如何进行源码包的安装?'
    ]

    for example in real_questions:
        relative, _ = retriever.is_relative(example)

        if relative:
            logger.warning(f'process query: {example}')
            retriever.query(example)
            empty_cache()
        else:
            logger.error(f'reject query: {example}')

    empty_cache()


def parse_args():
    """Parse command-line arguments."""
    parser = argparse.ArgumentParser(
        description='Feature store for processing directories.')
    parser.add_argument('--work_dir',
                        type=str,
                        default='',
                        help='自定义.')
    parser.add_argument(
        '--repo_dir',
        type=str,
        default='',
        help='需要读取的文件目录.')
    parser.add_argument(
        '--config_path',
        default='./ai/rag/config.ini',
        help='config目录')
    parser.add_argument(
        '--DCU_ID',
        default=[7],
        help='设置DCU')
    args = parser.parse_args()
    return args


if __name__ == '__main__':
    args = parse_args()

    log_file_path = os.path.join(args.work_dir, 'application.log')
    logger.add(log_file_path, rotation='10MB', compression='zip')

chenych's avatar
update  
chenych committed
476

chenych's avatar
chenych committed
477
478
479
480
    config = configparser.ConfigParser()
    config.read(args.config_path)

    # only init vector retriever
chenych's avatar
update  
chenych committed
481
482
483
    retriever = Retriever(config)
    fs_init = FeatureDataBase(embeddings=retriever.embeddings,
                              reranker=retriever.reranker)
chenych's avatar
chenych committed
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498

    # init es retriever, drop_old means build new one or updata the 'index_name'
    es_url = config.get('rag', 'es_url')
    index_name = config.get('rag', 'index_name')

    elastic_search = ElasticKeywordsSearch(
        elasticsearch_url=es_url,
        index_name=index_name,
        drop_old=True)

    # walk all files in repo dir
    file_opr = DocumentProcessor()
    files = file_opr.scan_directory(repo_dir=args.repo_dir)
    fs_init.initialize(files=files, work_dir=args.work_dir, file_opr=file_opr, elastic_search=elastic_search)
    file_opr.summarize(files)