main.py 2.81 KB
Newer Older
Rayyyyy's avatar
Rayyyyy committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
#!/usr/bin/env python3
import argparse
import os
from multiprocessing import Process, Value
from loguru import logger
from llm_service import Worker, llm_inference


def check_envs(args):

    if all(isinstance(item, int) for item in args.DCU_ID):
        os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(map(str, args.DCU_ID))
        logger.info(f"Set environment variable CUDA_VISIBLE_DEVICES to {args.DCU_ID}")
    else:
        logger.error(f"The --DCU_ID argument must be a list of integers, but got {args.DCU_ID}")
        raise ValueError("The --DCU_ID argument must be a list of integers")

def parse_args():
    """Parse args."""
    parser = argparse.ArgumentParser(description='Executor.')
    parser.add_argument(
        '--DCU_ID',
        default=[1,2,6,7],
        help='设置DCU')
    parser.add_argument(
        '--config_path',
        default='/path/to/your/ai/config.ini',
        type=str,
        help='config.ini路径')
    parser.add_argument(
        '--standalone',
        default=False,
        help='部署LLM推理服务.')
    parser.add_argument(
        '--accelerate',
        default=False,
        type=bool,
        help='LLM推理是否启用加速'
    )
    args = parser.parse_args()
    return args


def build_reply_text(reply: str, references: list):
    if len(references) < 1:
        return reply

    ret = reply
    for ref in references:
        ret += '\n'
        ret += ref
    return ret


def reply_workflow(assistant):

    queries = ['你好,我们公司想要购买几台测试机,请问需要联系贵公司哪位?']
    for query in queries:
        code, reply, references = assistant.produce_response(query=query,
                                                     history=[],
                                                     judgment=False)
        logger.info(f'{code}, {query}, {reply}, {references}')


def run():
    args = parse_args()
    if args.standalone is True:
        import time
        check_envs(args)
        server_ready = Value('i', 0)
        server_process = Process(target=llm_inference,
                                 args=(args.config_path,
                                       len(args.DCU_ID),
                                       args.accelerate,
                                       server_ready))

        server_process.daemon = True
        server_process.start()
        while True:
            if server_ready.value == 0:
                logger.info('waiting for server to be ready..')
                time.sleep(15)
            elif server_ready.value == 1:
                break
            else:
                logger.error('start local LLM server failed, quit.')
                raise Exception('local LLM path')
        logger.info('LLM Server start.')

    assistant = Worker(args=args)
    reply_workflow(assistant)


if __name__ == '__main__':
    run()