inferencer.py 7.16 KB
Newer Older
Rayyyyy's avatar
Rayyyyy committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import time
import os
import configparser
import argparse
from multiprocessing import Value
from aiohttp import web
import torch
from loguru import logger

from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel


def check_envs(args):
    if all(isinstance(item, int) for item in args.DCU_ID):
        os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(map(str, args.DCU_ID))
        logger.info(f"Set environment variable CUDA_VISIBLE_DEVICES to {args.gita}")
    else:
        logger.error(f"The --DCU_ID argument must be a list of integers, but got {args.DCU_ID}")
        raise ValueError("The --DCU_ID argument must be a list of integers")


def build_history_messages(prompt, history, system: str = None):
    history_messages = []
    if system is not None and len(system) > 0:
        history_messages.append({'role': 'system', 'content': system})
    for item in history:
        history_messages.append({'role': 'user', 'content': item[0]})
        history_messages.append({'role': 'assistant', 'content': item[1]})
    history_messages.append({'role': 'user', 'content': prompt})
    return history_messages


class InferenceWrapper:

    def __init__(self, model_path: str, accelerate: bool, stream_chat: bool):
        self.accelerate = accelerate
        self.stream_chat = stream_chat
        # huggingface
        self.tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
        self.model = AutoModelForCausalLM.from_pretrained(model_path,
                                                          trust_remote_code=True,
                                                          device_map='auto',
                                                          torch_dtype=torch.bfloat16).eval()
        if self.accelerate:
            try:
                # fastllm
                from fastllm_pytools import llm
                if self.stream_chat:
                    self.model = llm.model(model_path)
                else:
                    self.model = llm.from_hf(self.model, self.tokenizer, dtype="float16").cuda()

            except Exception as e:
                logger.error(str(e))


    def chat(self, prompt: str, history=[]):
        output_text = ''
        try:
            if self.accelerate:
                output_text = self.model.response(prompt)
            else:
                output_text, _ = self.model.chat(self.tokenizer,
                                                    prompt,
                                                    history,
                                                    do_sample=False)
        except Exception as e:
            logger.error(str(e))
        return output_text


    def chat_stream(self, prompt: str, history=[]):
        '''流式服务'''
        if self.accelerate:
            from fastllm_pytools import llm
            # Fastllm
            for response in self.model.stream_response(prompt, history=[]):
                yield response
        else:
            # HuggingFace
            current_length = 0
            past_key_values = None
            for response, _, past_key_values in self.model.stream_chat(self.tokenizer, prompt, history=history,
                                                                past_key_values=past_key_values,
                                                                return_past_key_values=True):
                output_text = response[current_length:]

                yield output_text
                current_length = len(response)


class LLMInference:
    def __init__(self,
                 model_path: str,
                 tensor_parallel_size: int,
                 device: str = 'cuda',
                 accelerate: bool = False
                 ) -> None:

        self.device = device

        self.inference = InferenceWrapper(model_path,
                                          accelerate=accelerate,
                                          tensor_parallel_size=tensor_parallel_size)

    def generate_response(self, prompt, history=[]):
        output_text = ''
        error = ''
        time_tokenizer = time.time()

        try:
            output_text = self.inference.chat(prompt, history)

        except Exception as e:
            error = str(e)
            logger.error(error)

        time_finish = time.time()

        logger.debug('output_text:{} \ntimecost {} '.format(output_text,
            time_finish - time_tokenizer))

        return output_text, error


def infer_test(args):
    config = configparser.ConfigParser()
    config.read(args.config_path)

    model_path = config['llm']['local_llm_path']
    accelerate = config.getboolean('llm', 'accelerate')
    inference_wrapper = InferenceWrapper(model_path,
                                         accelerate=accelerate,
                                         tensor_parallel_size=1)
    # prompt = "hello,please introduce yourself..."
    prompt = "你好,请介绍北京大学"
    history = []
    time_first = time.time()
    output_text = inference_wrapper.chat(prompt, use_history=True, history=history)
    time_second = time.time()
    logger.debug('问题:{} 回答:{} \ntimecost {} '.format(
        prompt, output_text, time_second - time_first))


def llm_inference(args):
    """
    启动 Web 服务器,接收 HTTP 请求,并通过调用本地的 LLM 推理服务生成响应.

    """
    config = configparser.ConfigParser()
    config.read(args.config_path)

    bind_port = int(config['default']['bind_port'])
    model_path = config['llm']['local_llm_path']
    accelerate = config.getboolean('llm', 'accelerate')
    inference_wrapper = InferenceWrapper(model_path,
                                         accelerate=accelerate,
                                         stream_chat=args.stream_chat)
    async def inference(request):
        start = time.time()
        input_json = await request.json()

        prompt = input_json['prompt']
        history = input_json['history']
        if args.stream_chat:
            text = inference_wrapper.stream_chat(prompt=prompt, history=history)
        else:
            text = inference_wrapper.chat(prompt=prompt, history=history)
        end = time.time()
        logger.debug('问题:{} 回答:{} \ntimecost {} '.format(prompt, text, end - start))
        return web.json_response({'text': text})

    app = web.Application()
    app.add_routes([web.post('/inference', inference)])
    web.run_app(app, host='0.0.0.0', port=bind_port)


def parse_args():
    '''参数'''
    parser = argparse.ArgumentParser(
        description='Feature store for processing directories.')
    parser.add_argument(
        '--config_path',
        default='/home/zhangwq/project/shu_new/ai/config.ini',
        help='config目录')
    parser.add_argument(
        '--query',
        default=['请问下产品的服务器保修或保修政策?'],
        help='提问的问题.')
    parser.add_argument(
        '--DCU_ID',
        default=[0],
        help='设置DCU')
    parser.add_argument(
        '--stream_chat',
        action='store_true',
        help='启用流式对话方式')
    args = parser.parse_args()
    return args


def main():
    args = parse_args()
    check_envs(args)
    #infer_test(args)
    llm_inference(args)


if __name__ == '__main__':
    main()