retriever.py 8.92 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import argparse
import configparser
import os
import requests
import time
import uvicorn

from fastapi import FastAPI, Request
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from sklearn.metrics import precision_recall_curve
from loguru import logger
from BCEmbedding.tools.langchain import BCERerank
from langchain.retrievers import ContextualCompressionRetriever
from langchain_community.vectorstores.utils import DistanceStrategy
from requests.exceptions import RequestException
from elastic_keywords_search import ElasticKeywordsSearch

app = FastAPI()


class Retriever:
    def __init__(self, config) -> None:

        self.mix, self.es, self.vector = None, None, None
        work_dir = config['default']['work_dir']

        self.es_top_k = int(config['rag']['es_top_k'])
        self.vector_top_k = int(config['rag']['vector_top_k'])

        embedding_model_path = config.get('rag', 'embedding_model_path') or None
        reranker_model_path = config.get('rag', 'reranker_model_path') or None
        es_url = config.get('rag', 'es_url') or None
        index_name = config.get('rag', 'index_name') or None

        # Mix
        if embedding_model_path and reranker_model_path and es_url and index_name:
            self.init_mix_retriever(work_dir, embedding_model_path, reranker_model_path, es_url, index_name)

        # ES
        elif not embedding_model_path or not reranker_model_path:
            if self.is_es_available(es_url, index_name):
                self.es_retriever = ElasticKeywordsSearch(es_url, index_name, drop_old=False)
                self.weights = [0.5, 0.5]
                self.es = True
                logger.info('Initializing ES retriever alone!')

        # Vector
        elif not es_url or not index_name:
            self.init_vector_retriever(work_dir, embedding_model_path, reranker_model_path)
            self.vector = True
            logger.info('Initializing Vector retriever alone!')
        else:
            raise ValueError(
                "Incomplete configuration. Please specify all required parameters for either vector or ES retrieval.")

    def init_vector_retriever(self, work_dir, embedding_model_path, reranker_model_path):
        logger.info('loading test2vec and rerank models')
        self.embeddings = HuggingFaceEmbeddings(
            model_name=embedding_model_path,
            model_kwargs={'device': 'cuda'},
            encode_kwargs={
                'batch_size': 1,
                'normalize_embeddings': True
            })
        # half
        self.embeddings.client = self.embeddings.client.half()
        reranker_args = {
            'model': reranker_model_path,
            'top_n': self.vector_top_k,
            'device': 'cuda',
            'use_fp16': True
        }
        self.reranker = BCERerank(**reranker_args)

        self.vector_store = FAISS.load_local(
            os.path.join(work_dir, 'db_response'),
            embeddings=self.embeddings,
            allow_dangerous_deserialization=True,
            distance_strategy=DistanceStrategy.MAX_INNER_PRODUCT)

        retriever = self.vector_store.as_retriever(
            search_type='similarity',
            search_kwargs={
                'score_threshold': 0.15,
                'k': 30
            }
        )
        self.compression_retriever = ContextualCompressionRetriever(
            base_compressor=self.reranker, base_retriever=retriever)

    def init_mix_retriever(self, work_dir, embedding_model_path, reranker_model_path, es_url, index_name):

        if self.is_es_available(es_url, index_name):
            self.es_retriever = ElasticKeywordsSearch(es_url, index_name, drop_old=False)
            self.weights = [0.5, 0.5]
            self.init_vector_retriever(work_dir, embedding_model_path, reranker_model_path)
            self.mix = True
            logger.info('Initializing Mix retriever!')
        else:
            self.init_vector_retriever(work_dir, embedding_model_path, reranker_model_path)
            self.vector = True
            logger.info('Initializing Vector retriever alone!')

    def is_es_available(self, url, index_name, timeout=5):
        try:
            response = requests.get(f"{url}/_cluster/health", timeout=timeout)
            if response.status_code == 200:

                index_response = requests.head(f"{url}/{index_name}", timeout=timeout)
                if index_response.status_code == 200:
                    logger.info(f"The index:'{index_name}' exist!")
                    return True
                elif index_response.status_code == 404:
                    logger.warning(f"The index:'{index_name}' not exist!")
                else:
                    logger.error(f"Unexpected status code when checking index: {index_response.status_code}")
            else:
                logger.error(f"Elasticsearch service returned non-200 status code: {response.status_code}")
        except RequestException as e:
            logger.error(f"Error connecting to Elasticsearch service: {e}")

        return False

    def weighted_reciprocal_rank(self, es_docs, vector_docs):
        # Create a union of all unique documents in the input doc_lists
        all_documents = set()

        for vector_doc in vector_docs:
            all_documents.add(vector_doc.page_content)
        for es_doc in es_docs:
            all_documents.add(es_doc.page_content)

        rrf_score_dic = {doc: 0.0 for doc in all_documents}

        for rank, vector_doc in enumerate(vector_docs, start=1):
            rrf_score = self.weights[1] * (1 / (rank + 60))
            rrf_score_dic[vector_doc.page_content] += rrf_score
        for rank, es_doc in enumerate(es_docs, start=1):
            rrf_score = self.weights[0] * (1 / (rank + 60))
            rrf_score_dic[es_doc.page_content] += rrf_score

        sorted_documents = sorted(rrf_score_dic.keys(), key=lambda x: rrf_score_dic[x], reverse=True)

        # Map the sorted page_content back to the original document objects
        page_content_to_doc_map = {}
        for doc in es_docs:
            page_content_to_doc_map[doc.page_content] = doc
        for doc in vector_docs:
            page_content_to_doc_map[doc.page_content] = doc

        sorted_docs = [page_content_to_doc_map[page_content] for page_content in sorted_documents]

        return sorted_docs

    def remove_duplicates(self, sorted_docs):
        seen = set()
        unique_docs = []

        for doc in sorted_docs:
            identifier = (
                doc.metadata.get('source', ''),
                doc.metadata.get('read', ''),
                # doc.page_content  # Need further testing
            )

            if identifier not in seen:
                seen.add(identifier)
                unique_docs.append(doc)

        return unique_docs

    def hybrid_retrieval(self, query):
        es_docs = self.es_retriever.similarity_search_with_score(query, k=self.es_top_k)
        vector_docs = self.query(query)
        sorted_docs = self.weighted_reciprocal_rank(es_docs, vector_docs)
        unique_docs = self.remove_duplicates(sorted_docs)

        return unique_docs

    def rag_workflow(self, query):
        chunks = []
        time_1 = time.time()

        if self.mix:
            chunks = self.hybrid_retrieval(query)
        elif self.es:
            chunks = self.es_retriever.similarity_search_with_score(query, k=self.es_top_k)
        else:
            chunks = self.query(query)

        time_2 = time.time()
        logger.debug(f'query:{query} \nchunks:{chunks} \ntimecost:{time_2 - time_1}')
        return chunks

    def query(self, question: str):
        if question is None or len(question) < 1:
            return None

        if len(question) > 512:
            logger.warning('input too long, truncate to 512')
            question = question[0:512]

        docs = self.compression_retriever.get_relevant_documents(question)
        return docs


retriever = None


@app.post("/retrieve")
async def retrieve(request: Request):
    data = await request.json()
    query = data.get("query")
    chunks = retriever.rag_workflow(query)
    return {"chunks": chunks}


def rag_retrieve(args: str):
    """
    启动 Web 服务器,接收 HTTP 请求,并通过调用本地的 rag 检索服务.

    """
    global retriever
    config = configparser.ConfigParser()
    config.read(args.config_path)
    bind_port = int(config['default']['bind_port'])
    os.environ["CUDA_VISIBLE_DEVICES"] = args.dcu_id
    retriever = Retriever(config)

    uvicorn.run(app, host="0.0.0.0", port=bind_port)


def parse_args():
    parser = argparse.ArgumentParser(
        description='Feature store for processing directories.')
    parser.add_argument(
        '--config_path',
        default='/ai/rag/config.ini',
        help='config目录')
    parser.add_argument(
        '--dcu_id',
        default=None,
        help='设置DCU')
    args = parser.parse_args()
    return args


def main():
    args = parse_args()
    rag_retrieve(args)


if __name__ == '__main__':
    main()