- 25 Apr, 2024 4 commits
-
-
Zach Mueller authored
* Introduce saveable callbacks * Add note * Test for non-present and flag * Support early stopping and refusing to train further * Update docstring * More saving * Import oopsie * Apply suggestions from code review Co-authored-by:
amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Make it go through TrainerArguments * Document * Fix test * Apply suggestions from code review Co-authored-by:
amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Rework to allow for duplicates * CLean * Fix failing tests --------- Co-authored-by:
amyeroberts <22614925+amyeroberts@users.noreply.github.com>
-
Alexander Visheratin authored
* Added WSD scheduler. * Added tests. * Fixed errors. * Fix formatting. * CI fixes.
-
Yoach Lacombe authored
* first modeling code * make repository * still WIP * update model * add tests * add latest change * clean docstrings and copied from * update docstrings md and readme * correct chroma function * correct copied from and remove unreleated test * add doc to toctree * correct imports * add convert script to notdoctested * Add suggestion from Sanchit Co-authored-by:
Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com> * correct get_uncoditional_inputs docstrings * modify README according to SANCHIT feedback * add chroma to audio utils * clean librosa and torchaudio hard dependencies * fix FE * refactor audio decoder -> audio encoder for consistency with previous musicgen * refactor conditional -> encoder * modify sampling rate logics * modify license at the beginning * refactor all_self_attns->all_attentions * remove ignore copy from causallm generate * add copied from for from_sub_models * fix make copies * add warning if audio is truncated * add copied from where relevant * remove artefact * fix convert script * fix torchaudio and FE * modify chroma method according to feedback-> better naming * refactor input_values->input_features * refactor input_values->input_features and fix import fe * add input_features to docstrigs * correct inputs_embeds logics * remove dtype conversion * refactor _prepare_conditional_hidden_states_kwargs_for_generation ->_prepare_encoder_hidden_states_kwargs_for_generation * change warning for chroma length * Update src/transformers/models/musicgen_melody/convert_musicgen_melody_transformers.py Co-authored-by:
Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com> * change way to save wav, using soundfile * correct docs and change to soundfile * fix import * fix init proj layers * add draft training * fix cross entropy * clean loss computation * fix labels * remove line breaks from md * fix issue with docstrings * add FE suggestions * improve is in logics and remove useless imports * remove custom from_pretrained * simplify docstring code * add suggestions for modeling tests * make style * update converting script with sanity check * remove encoder attention mask from conditional generation * replace musicgen melody checkpoints with official orga * rename ylacombe->facebook in checkpoints * fix copies * remove unecessary warning * add shape in code docstrings * add files to slow doc tests * fix md bug and add md to not_tested * make fix-copies * fix hidden states test and batching * update training code * add training tests for melody * add training for o.g musicgen * fix copied from * remove final todos * make style * fix style * add suggestions from review * add ref to the original loss computation code * rename method + fix labels in tests * make style --------- Co-authored-by:
Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
-
amyeroberts authored
-
- 24 Apr, 2024 5 commits
-
-
Gustavo de Rosa authored
* chore(root): Initial commit of Phi-3 files. * fix(root): Fixes Phi-3 missing on readme. * fix(root): Ensures files are consistent. * fix(phi3): Fixes unit tests. * fix(tests): Fixes style of phi-3 test file. * chore(tests): Adds integration tests for Phi-3. * fix(phi3): Removes additional flash-attention usage, .e.g, swiglu and rmsnorm. * fix(phi3): Fixes incorrect docstrings. * fix(phi3): Fixes docstring typos. * fix(phi3): Adds support for Su and Yarn embeddings. * fix(phi3): Improves according first batch of reviews. * fix(phi3): Uses up_states instead of y in Phi3MLP. * fix(phi3): Uses gemma rotary embedding to support torch.compile. * fix(phi3): Improves how rotary embedding classes are defined. * fix(phi3): Fixes inv_freq not being re-computed for extended RoPE. * fix(phi3): Adds last suggestions to modeling file. * fix(phi3): Splits inv_freq calculation in two lines.
-
Eduardo Pacheco authored
* Fixed main train issues * Added loss test * Update src/transformers/models/seggpt/modeling_seggpt.py Co-authored-by:
amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Added missing labels arg in SegGptModel forward * Fixed typo * Added slow test to test loss calculation --------- Co-authored-by:
amyeroberts <22614925+amyeroberts@users.noreply.github.com>
-
Fanli Lin authored
* make device-agnostic * clean code
-
Arthur authored
* nit * nit and fmt skip * fixup * Update src/transformers/convert_slow_tokenizer.py Co-authored-by:
amyeroberts <22614925+amyeroberts@users.noreply.github.com> * set to true --------- Co-authored-by:
amyeroberts <22614925+amyeroberts@users.noreply.github.com>
-
Pavel Iakubovskii authored
* Add test for square image that fails * Fix for square images * Extend test cases * Fix resizing in tests * Style fixup
-
- 23 Apr, 2024 4 commits
-
-
Arthur authored
* push legacy to fast as well * super strange * Update src/transformers/convert_slow_tokenizer.py * make sure we are BC * fix Llama test * nit * revert * more test * style * update * small update w.r.t tokenizers * nit * don't split * lol * add a test for `add_prefix_space=False` * fix gemma tokenizer as well * update * fix gemma * nicer failures * fixup * update * fix the example for legacy = False * use `huggyllama/llama-7b` for the PR doctest * nit * use from_slow * fix llama
-
Raushan Turganbay authored
* clean commit history I hope * get kv seq length correctly * PR suggestions * Update src/transformers/testing_utils.py Co-authored-by:
Joao Gante <joaofranciscocardosogante@gmail.com> * add comment * give gpt bigcode it's own overriden method * remove code --------- Co-authored-by:
Joao Gante <joaofranciscocardosogante@gmail.com>
-
Fanli Lin authored
* add cuda flag * check for sdpa * add bitsandbytes
-
Eduardo Pacheco authored
* Added cross attention support * Fixed dtypes * Fixed assumption * Moved to decoder
-
- 22 Apr, 2024 6 commits
-
-
zhong zhuang authored
* [FEAT]: EETQ quantizer support * Update quantization.md * Update docs/source/en/main_classes/quantization.md Co-authored-by:
Marc Sun <57196510+SunMarc@users.noreply.github.com> * Update docs/source/en/quantization.md Co-authored-by:
Marc Sun <57196510+SunMarc@users.noreply.github.com> * Update docs/source/en/quantization.md Co-authored-by:
Marc Sun <57196510+SunMarc@users.noreply.github.com> * Update src/transformers/integrations/__init__.py Co-authored-by:
Marc Sun <57196510+SunMarc@users.noreply.github.com> * Update src/transformers/integrations/__init__.py Co-authored-by:
Marc Sun <57196510+SunMarc@users.noreply.github.com> * Update src/transformers/integrations/eetq.py Co-authored-by:
Marc Sun <57196510+SunMarc@users.noreply.github.com> * Update src/transformers/integrations/eetq.py Co-authored-by:
Marc Sun <57196510+SunMarc@users.noreply.github.com> * Update src/transformers/integrations/eetq.py Co-authored-by:
Marc Sun <57196510+SunMarc@users.noreply.github.com> * Update tests/quantization/eetq_integration/test_eetq.py Co-authored-by:
Marc Sun <57196510+SunMarc@users.noreply.github.com> * Update src/transformers/quantizers/auto.py Co-authored-by:
Marc Sun <57196510+SunMarc@users.noreply.github.com> * Update src/transformers/quantizers/auto.py Co-authored-by:
Marc Sun <57196510+SunMarc@users.noreply.github.com> * Update src/transformers/quantizers/auto.py Co-authored-by:
Marc Sun <57196510+SunMarc@users.noreply.github.com> * Update src/transformers/quantizers/quantizer_eetq.py Co-authored-by:
Marc Sun <57196510+SunMarc@users.noreply.github.com> * Update tests/quantization/eetq_integration/test_eetq.py Co-authored-by:
Marc Sun <57196510+SunMarc@users.noreply.github.com> * Update src/transformers/quantizers/quantizer_eetq.py Co-authored-by:
Marc Sun <57196510+SunMarc@users.noreply.github.com> * Update tests/quantization/eetq_integration/test_eetq.py Co-authored-by:
Marc Sun <57196510+SunMarc@users.noreply.github.com> * Update tests/quantization/eetq_integration/test_eetq.py Co-authored-by:
Marc Sun <57196510+SunMarc@users.noreply.github.com> * [FEAT]: EETQ quantizer support * [FEAT]: EETQ quantizer support * remove whitespaces * update quantization.md * style * Update docs/source/en/quantization.md Co-authored-by:
Younes Belkada <49240599+younesbelkada@users.noreply.github.com> * add copyright * Update quantization.md * Update docs/source/en/quantization.md Co-authored-by:
amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Update docs/source/en/quantization.md Co-authored-by:
amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Address the comments by amyeroberts * style --------- Co-authored-by:
Marc Sun <57196510+SunMarc@users.noreply.github.com> Co-authored-by:
Marc Sun <marc@huggingface.co> Co-authored-by:
Younes Belkada <49240599+younesbelkada@users.noreply.github.com> Co-authored-by:
amyeroberts <22614925+amyeroberts@users.noreply.github.com>
-
Kamil Akesbi authored
* add sdpa to wav2vec. Co-authored-by:
kamilakesbi <kamil@huggingface.co> Co-authored-by:
jp1924 <jp42maru@gmail.com> * add fa2 to wav2vec2 * add tests * fix attention_mask compatibility with fa2 * minor dtype fix * replace fa2 slow test * fix fa2 slow test * apply code review + add fa2 batch test * add sdpa and fa2 to hubert * sdpa and fa2 to data2vec_audio * sdpa and fa2 to Sew * sdpa to unispeech + unispeech sat * small fix * attention mask in tests Co-authored-by:
Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com> * add_speedup_benchmark_to_doc --------- Co-authored-by:
kamil@huggingface.co <kamil.akesbi@gmail.com> Co-authored-by:
Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
-
Pavel Iakubovskii authored
* Add class_embed to tied weights for DETA * Fix test_tied_weights_keys for DETA model * Replace error raise with assert statement
-
Joao Gante authored
fix test
-
Matt authored
* stash commit (will discard all of this) * stash commit * First commit - needs a lot of testing! * Add a test * Fix imports and make the tests actually test something * Tests pass! * Rearrange test * Add comments (but it's still a bit confusing) * Stop storing the tokenizer * Comment fixup * Fix for input_ids with a single sequence * Update tests to test single sequences * make fixup * Fix incorrect use of isin() * Expand tests to catch more cases * Expand tests to catch more cases * make fixup * Fix length calculation and update tests * Handle 臓 as a space replacement too * Update src/transformers/generation/stopping_criteria.py Co-authored-by:
Joao Gante <joaofranciscocardosogante@gmail.com> * Add optimizations from Joao's suggestion * Remove TODO * Update src/transformers/generation/stopping_criteria.py Co-authored-by:
Joao Gante <joaofranciscocardosogante@gmail.com> * Update tests/generation/test_stopping_criteria.py Co-authored-by:
Joao Gante <joaofranciscocardosogante@gmail.com> * make fixup * Rename some variables and remove some debugging clauses for clarity * Add tests for the sub-methods * Clarify one test slightly * Add stop_strings to GenerationConfig * generate() supports stop_string arg, asks for tokenizer if not provided * make fixup * Cleanup code and rename variables for clarity * Update tokenizer error * Update tokenizer passing, handle generation on GPU * Slightly more explanation cleanup * More comment cleanup * Factor out the token cleanup so it's more obvious what we're doing, and we can change it later * Careful with that cleanup! * Cleanup + optimizations to _get_matching_positions * More minor performance tweaks * Implement caching and eliminate some expensive ops (startup time: 200ms -> 9ms) * Remove the pin_memory call * Parallelize across all stop strings! * Quick fix for tensor devices * Update embeddings test for the new format * Fix test imports * Manual patching for BERT-like tokenizers * Return a bool vector instead of a single True/False * Better comment * Better comment * Add tests from @zucchini-nlp * Amy's list creation nit * tok_list -> token_list * Push a big expanded docstring (should we put it somewhere else?) * Expand docstrings * Docstring fixups * Rebase * make fixup * Make a properly general method for figuring out token strings * Fix naming throughout the functions * Move cache, refactor, fix tests * Add comment * Remove finished TODO * Remove finished TODO * make fixup * Update src/transformers/generation/stopping_criteria.py Co-authored-by:
amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Update and shorten docstring * Update tests to be shorter/clearer and test specific cases --------- Co-authored-by:
Joao Gante <joaofranciscocardosogante@gmail.com> Co-authored-by:
amyeroberts <22614925+amyeroberts@users.noreply.github.com>
-
Howard Liberty authored
* Add FSDP config for CPU RAM efficient loading * Style fix * Update src/transformers/training_args.py Co-authored-by:
Zach Mueller <muellerzr@gmail.com> * Update src/transformers/training_args.py Co-authored-by:
amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Add sync_module_states and cpu_ram_efficient_loading validation logic * Update src/transformers/training_args.py Co-authored-by:
amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Style --------- Co-authored-by:
Zach Mueller <muellerzr@gmail.com> Co-authored-by:
amyeroberts <22614925+amyeroberts@users.noreply.github.com>
-
- 19 Apr, 2024 8 commits
-
-
Jo茫o David authored
* Duplicate swiftformer * Convert SwiftFormerPatchEmbedding * Convert SwiftFormerEmbeddings * Convert TFSwiftFormerMlp * Convert TFSwiftFormerConvEncoder * Convert TFSwiftFormerLocalRepresentation * convert TFSwiftFormerEncoderBlock * Convert SwiftFormerStage * Convert SwiftFormerEncoder * Add TFSWiftFormerPreTrainedModel * Convert SwiftFormerForImageClassification * Add kwargs and start drop path * Fix syntax * Change Model class name * Add TFSwiftFormer to __init__ * Duplicate test_modeling_swiftformer * First test conversions * Change require_torch to require_tf * Add exports to swiftformer __init__ * Add TFSwiftFormerModel wrapper * Fix __init__ and run black * Remove docstring from MainLayer, fix padding * Use keras.layers.Activation on keras.Sequential * Fix swiftformer exports * Fix activation layer from config * Remove post_inits * Use tf.keras.layers.ZeroPadding2D * Convert torch normalize * Change tf test input shape * Fix softmax and reduce_sum * Convert expand_dims and repeat * Add missing reshape and tranpose * Simplify TFSwiftFormerEncoderBlock.call * Fix mismatch in patch embeddings * Fix expected output shape to match channels last * Fix swiftformer typo * Disable test_onnx * Fix TFSwiftFormerForImageClassification call * Add unpack inputs * Convert flatten(2).mean(-1) * Change vision dummy inputs (to be reviewed) * Change test_forward_signature to use .call * Fix @unpack_inputs * Set return_tensors="tf" and rename class * Rename wrongly named patch_embeddings layer * Add serving_output and change dummy_input shape * Make dimensions BCHW and transpose inside embedding layer * Change SwiftFormerEncoderBlock * Fix ruff problems * Add image size to swiftformer config * Change tranpose to MainLayer and use -1 for reshape * Remove serving_outputs and dummy_inputs * Remove test_initialization test from tf model * Make Sequential component a separate layer * Fix layers' names * Tranpose encoder outputs * Fix tests and check if hidden states is not None * Fix TFSwiftFormerForImageClassification * Run make fixup * Run make fix-copies * Update modeling_tf_auto * Update docs * Fix modeling auto mapping * Update modelint_tf_swiftformer docs * Fill image_size doc and type * Add reduction=None to loss computation * Update docs * make style * Debug: Delete the tip to see if that changes anything * Re-add tip * Remove add_code_sample_docstrings * Remove unused import * Get the debug to actually tell us the problem it has with the docs * Try a substitution to match the PyTorch file? * Add swiftformer to ignore list * Add build() methods * Update copyright year Co-authored-by:
amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Remove FIXME comment * Remove from_pt * Update copyright year Co-authored-by:
amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Rename one-letter variables * Remove FIXMEs related to momentum * Remove old TODO comment * Remove outstanding FIXME comments * Get dropout rate from config * Add specific dropout config for MLP * Add convencoder dropout to config * Pass config to SwiftFormerDropPath layer * Fix drop_path variable name and add Adapted from comment * Run ruff * Removed copied from comment * Run fix copies * Change drop_path to identity to match pt * Cleanup build() methods and move to new keras imports * Update docs/source/en/model_doc/swiftformer.md Co-authored-by:
Matt <Rocketknight1@users.noreply.github.com> * Raise error if drop_path_rate > 0.0 * Apply suggestions from code review Replace (self.dim), with self.dim, Co-authored-by:
Matt <Rocketknight1@users.noreply.github.com> * Remove drop_path function * Add training to TFSwiftFormerEncoder * Set self.built = True last Co-authored-by:
amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Should have been added to previous commit Co-authored-by:
amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Apply suggestions from code review Co-authored-by:
amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Change default_feature_extractor to default_image_processor Co-authored-by:
amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Import Keras from modeling_tf_utils * Remove relative import * Run ruff --fix * Move import keras to tf_available * Add copied from comment to test_forward_signature * Reduce batch size and num_labels * Extract loss logic to hf_compute_loss * Run ruff format --------- Co-authored-by:
Matt <rocketknight1@gmail.com> Co-authored-by:
amyeroberts <22614925+amyeroberts@users.noreply.github.com> Co-authored-by:
Matt <Rocketknight1@users.noreply.github.com>
-
hoshi-hiyouga authored
* Update modeling_utils.py * Update test_modeling_utils.py * Update test_modeling_utils.py * Update test_modeling_utils.py
-
Raushan Turganbay authored
* remove seq length from generation tests * style and quality * [test_all] & PR suggestion Co-authored-by:
Joao Gante <joaofranciscocardosogante@gmail.com> * Update tests/generation/test_utils.py Co-authored-by:
Arthur <48595927+ArthurZucker@users.noreply.github.com> * [test all] remove unused variables --------- Co-authored-by:
Joao Gante <joaofranciscocardosogante@gmail.com> Co-authored-by:
Arthur <48595927+ArthurZucker@users.noreply.github.com>
-
Marc Sun authored
* Use unwrap with the one in accelerate * oups * update unwrap * fix * wording * raise error instead * comment * doc * Update src/transformers/modeling_utils.py Co-authored-by:
Zach Mueller <muellerzr@gmail.com> * style * put else --------- Co-authored-by:
Zach Mueller <muellerzr@gmail.com>
-
Sanchit Gandhi authored
* fix tests * style * more fixes * move model to device * move logits to cpu * update expected values * use ungated dataset * fix * fix * update --------- Co-authored-by:ydshieh <ydshieh@users.noreply.github.com>
-
Sanchit Gandhi authored
fixes
-
Jacky Lee authored
* feat: multidevice for resnet * feat: yes! resnet * fix: compare all elements in tuple * feat: support for regnet * feat: support for convnextv2 * feat: support for bit * feat: support for cvt * feat: add support for focalnet * feat: support for yolos * feat: support for glpn * feat: support for imagegpt * feat: support for levit * feat: support for mgp_str * feat: support for mobilnet_v1 * feat: support for mobilnet_v2 * feat: support for mobilevit * feat: support for mobilevitv2 * feat: support for poolformer * fix: copies * fix: code quality check * update: upstream changes from main * fix: consistency check * feat: support for sam * feat: support for switchformer * feat: support for swin * feat: support for swinv2 * feat: support for timesformer * feat: suport for trocr * feat: support for upernet * fix: check copies * update: rerun CI * update: rerun again, maybe * update: one more rerun --------- Co-authored-by:Jacky Lee <jackylee328@gmail.com>
-
NielsRogge authored
* Add special tokens * Add special tokens * Use fmt * Uncomment code * Add test * Remove scripts * Address comments * Improve tests * Address comment * Remove flag
-
- 18 Apr, 2024 10 commits
-
-
Zach Mueller authored
* Alias * Note alias * Tests and src * Rest * Clean * Change typing? * Fix tests * Deprecation versions
-
Albert Villanova del Moral authored
* Fix test with exif_transpose image * Replace datasets with PIL to load image in tests
-
Younes Belkada authored
FIX: Fixes unexpected behaviour for Llava / LLama & AWQ Fused modules + revert #30070 at the same time (#30317) * Update awq.py * style * revert felix PR * fix * add felix comments
-
Abhi Venigalla authored
* wip * fix __init__.py * add docs * Apply suggestions from code review Co-authored-by:
Arthur <48595927+ArthurZucker@users.noreply.github.com> * address comments 1 * work on make fixup * pass configs down * add sdpa attention * remove DbrxBlock * add to configuration_auto * docstring now passes formatting test * fix style * update READMEs * add dbrx to modeling_auto * make fix-copies generated this * add DBRX_PRETRAINED_CONFIG_ARCHIVE_MAP * config docstring passes formatting test * rename moe_loss_weight to router_aux_loss_coef * add to flash-attn documentation * fix model-path in tests * Explicitly make `"suli"` the default `ffn_act_fn` Co-authored-by:
Wing Lian <wing.lian@gmail.com> * default to using router_aux_loss_coef over ffn_config[moe_loss_weight] * fix _flash_attn_uses_top_left_mask and is_causal * fix tests path * don't use token type IDs * follow Llama and remove token_type_ids from test * init ConfigTester differently so tests pass * remove multiple choice test * remove question + answer test * remove sequence classification test * remove token classification test * copy Llama tests and remove token_type_ids from test inputs * do not test pruning or headmasking; style code * add _tied_weights_keys parameter to pass test * add type hints * fix type check * update config tester * remove masked_lm test * remove encoder tests * initialize DbrxModelTester with correct params * style * torch_dtype does not rely on torch * run make fixup, fix-copies * use https://huggingface.co/v2ray/dbrx-base-fixed/blob/main/modeling_dbrx.py * add copyright info * fix imports and DbrxRotaryEmbedding * update DbrxModel docstring * use copies * change model path in docstring * use config in DbrxFFN * fix flashattention2, sdpaattention * input config to DbrXAttention, DbrxNormAttentionNorm * more fixes * fix * fix again! * add informative comment * fix ruff? * remove print statement + style * change doc-test * fix doc-test * fix docstring * delete commented out text * make defaults match dbrx-instruct * replace `router_aux_loss_coef` with `moe_loss_weight` * is_decoder=True * remove is_decoder from configtester * implement sdpa properly * make is_decoder pass tests * start on the GenerationTesterMixin tests * add dbrx to sdpa documentation * skip weight typing test * style * initialize smaller model Co-authored-by:
Matt <Rocketknight1@users.noreply.github.com> * Add DBRX to toctree * skip test_new_cache_format * make config defaults smaller again * add pad_token_id * remove pad_token_id from config * Remove all references to DBRX_PRETRAINED_CONFIG_ARCHIVE_MAP * Update src/transformers/models/dbrx/__init__.py Co-authored-by:
Arthur <48595927+ArthurZucker@users.noreply.github.com> * Update src/transformers/models/dbrx/modeling_dbrx.py Co-authored-by:
Arthur <48595927+ArthurZucker@users.noreply.github.com> * Update docs/source/en/model_doc/dbrx.md Co-authored-by:
Matt <Rocketknight1@users.noreply.github.com> * Update src/transformers/models/dbrx/configuration_dbrx.py Co-authored-by:
Arthur <48595927+ArthurZucker@users.noreply.github.com> * Update docs/source/en/model_doc/dbrx.md Co-authored-by:
Arthur <48595927+ArthurZucker@users.noreply.github.com> * fix typo * Apply suggestions from code review Co-authored-by:
Arthur <48595927+ArthurZucker@users.noreply.github.com> * update docs, fix configuration_auto.py * address pr comments * remove is_decoder flag * slice * fix requires grad * remove grad * disconnect differently * remove grad * enable grads * patch * detach expert * nissan al ghaib * Update modeling_dbrx.py * Update src/transformers/models/dbrx/modeling_dbrx.py Co-authored-by:
Matt <Rocketknight1@users.noreply.github.com> * replace "Gemma" with "Dbrx" * remove # type: ignore * don't hardcode vocab_size * remove ToDo * Re-add removed idefics2 line * Update test to use tiny-random! * Remove TODO * Remove one more case of loading the entire dbrx-instruct in the tests * Update src/transformers/models/dbrx/modeling_dbrx.py Co-authored-by:
amyeroberts <22614925+amyeroberts@users.noreply.github.com> * address some comments * small model * add dbrx to tokenization_auto * More docstrings with add_start_docstrings * Dbrx for now * add PipelineTesterMixin * Update src/transformers/models/dbrx/configuration_dbrx.py Co-authored-by:
amyeroberts <22614925+amyeroberts@users.noreply.github.com> * remove flash-attn2 import error * fix docstring Co-authored-by:
amyeroberts <22614925+amyeroberts@users.noreply.github.com> * add useage example * put on one line Co-authored-by:
amyeroberts <22614925+amyeroberts@users.noreply.github.com> * fix ffn_act_fn Co-authored-by:
amyeroberts <22614925+amyeroberts@users.noreply.github.com> * change "dbrx" to "DBRX" for display purposes. * fix __init__.py? * fix __init__.py * fix README * return the aux_loss * remove extra spaces * fix configuration_auto.py * fix format in tokenization_auto * remove new line * add more useage examples --------- Co-authored-by:
Abhi Venigalla <abhi.venigalla@databricks.com> Co-authored-by:
Arthur <48595927+ArthurZucker@users.noreply.github.com> Co-authored-by:
Eitan Turok <eitan.turok@databricks.com> Co-authored-by:
Eitan Turok <150733043+eitanturok@users.noreply.github.com> Co-authored-by:
Wing Lian <wing.lian@gmail.com> Co-authored-by:
Eitan Turok <eitanturok@gmail.com> Co-authored-by:
Matt <Rocketknight1@users.noreply.github.com> Co-authored-by:
Matt <rocketknight1@gmail.com> Co-authored-by:
Your Name <you@example.com> Co-authored-by:
Mihir Patel <mihir.v.patel7@gmail.com> Co-authored-by:
amyeroberts <22614925+amyeroberts@users.noreply.github.com>
-
fxmarty authored
atol for sliding window test
-
tomeras91 authored
* Add jamba arch * apply "make fix-copies" changes * fix link to model in JambaConfig docstring * Add n_ctx in modeling file because repo-consistency wants that * Add jamba to flash attention and sdpa documentation * mamba dt_proj quant fix now works for LoRA as well * override test_left_padding_compatibility and use a more permissive tolerance. left padding numerical difference are accentuated by mamba layers * add jamba to tokenization auto * fix comments of shape (PR #24 in the model page: https://huggingface.co/ai21labs/Jamba-v0.1/discussions/24) * simple PR fixes * remove unnecessary kwargs from JambaAttentionDecoderLayer and JambaMambaDecoderLayer * remove the LoRA hack for the mamba dt_proj bias. It was solved in huggingface/peft#1530 (https://github.com/huggingface/peft/pull/1530) * Add copied comment on JambaMLP (it's the same as MixtralMLP) * remove padding_mask warnings. It's not supported anymore * fix docstring. Float instead of int * A few more minor PR fixes * (1) lowercase names for mamba layernorms (2) remove _apply_inner_layernorms and do it directly in the forward pass * Return None attention weights from mamba layers. Append to all attentions only if not None. * remove some leftover jamba archive lists * Better separation between expert vs non-expert layers. non-expert layers return None as router_logits, and it is not concatenated to all_router_logits returned from JambaModel * no need to take router_logits at config.expert_layer_offset anymore. result.router_logits now holds results only for expert layers * Add Jamba paper on READMEs * (1) rename n_ctx -> max_position_embeddings (2) don't use it in the modeling file since it's not needed (set it as an exception to check_config_attributes) * Add copied from comment * remove the code path for apply_inner_layernorms=False. Jamba always has the inner mamba layernorms * clearer docstring for _convert_to_standard_cache * style fixes * Change calc_logits_for_entire_prompt (bool) to num_logits_to_keep (int). Adapt assisted decoding code tp use it. Also small change in low memory beam search decoding path to support this new int value in model_inputs * rename test so it still overrides what its meant to override * draft * oups * nit * remove more complexe logic * fix names used in config * fix fix fix * style * fix some more failing tests * generate did not init the cache
馃檭 * more small nits * typo * config.mamba_expand * config.hidden_size for the intermediate size of the mamba shapes * fix init of pkv with torch.tensor() * empty tensor * fix some init issues * stupid changes required by generate because it does not even support it's own DynamicCache class * more fixes * fix general assisted gen cache_position bug * tests passing * Add offsets and periods as SPECIAL_CASES_TO_ALLOW in check_config_attributes.py * fix reorder_cache to reorder mamba states and override some more functions in HybridMambaAttentionDynamicCache * no need to override test_past_key_values_format() and _check_past_key_values_for_generate() in tests anymore * fix docstrings and typehints for past_key_values * style fixes * fix docs * change typehint due to copy from Mixtral * forgot import * import order * Add configuration_jamba and modeling_jamba to not_doctested because the model is too big to download (in docstring of JambaForCausalLM.forward) * Add integration test with tiny tandom Jamba model on hub * fix flash attention cache shapes * bring back forgotten hidden states * rename HybridMambaAttentionDynamicCache.seqlen_offset to has_previous_state (and make bool) and bugfix - it should be set to True after a finished forward pass of the entire model * align integration test after modeling fixes * bugfix - mamba can use precomputed states only of forward pass is on a single token * bugfix - mamba can use precomputed states only if they match the batch size * typo * remove making _prepare_4d_causal_attention_mask a leaf function * stop using past_seq_len.get_seq_length(). Use cache positions instead. Adjust test (test_decoder_model_past_with_large_inputs) accordingly --------- Co-authored-by:Arthur Zucker <arthur.zucker@gmail.com> Co-authored-by:
Joao Gante <joao@huggingface.co>
-
Yih-Dar authored
* fix * fix --------- Co-authored-by:ydshieh <ydshieh@users.noreply.github.com>
-
Pavel Iakubovskii authored
* Fix multiline processing * Update test for token2json
-
Alexander Visheratin authored
* Added flash attention 2. * Fixes. * Fix inheritance. * Fixed init. * Remove stuff. * Added documentation. * Add FA2 to M2M100 documentation. * Add test. * Fixed documentation. * Update src/transformers/models/m2m_100/modeling_m2m_100.py Co-authored-by:
Younes Belkada <49240599+younesbelkada@users.noreply.github.com> * Update docs/source/en/model_doc/nllb.md Co-authored-by:
amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Fixed variable name. --------- Co-authored-by:
Younes Belkada <49240599+younesbelkada@users.noreply.github.com> Co-authored-by:
amyeroberts <22614925+amyeroberts@users.noreply.github.com>
-
- 17 Apr, 2024 3 commits
-
-
fxmarty authored
* tentatively re-enable FA2 + SDPA * better comment * _ignore_causal_mask_sdpa as staticmethod * type hints * use past_seen_tokens instead * enable copied from for sdpa * ruff * llama simplifications on review * remove unnecessary self.is_causal check * fix copies * cleaning * precise message * better doc * add test * simplify * Update src/transformers/models/llama/modeling_llama.py Co-authored-by:
Arthur <48595927+ArthurZucker@users.noreply.github.com> * Update src/transformers/models/llama/modeling_llama.py Co-authored-by:
Arthur <48595927+ArthurZucker@users.noreply.github.com> * Update src/transformers/models/llama/modeling_llama.py Co-authored-by:
Arthur <48595927+ArthurZucker@users.noreply.github.com> * style --------- Co-authored-by:
Arthur <48595927+ArthurZucker@users.noreply.github.com>
-
Shane A authored
* Add OLMo using add-new-model-like with Llama * Fix incorrect tokenizer for OLMo * Copy-paste relevant OLMo methods and their imports * Add OLMo config * Modify OLMo config to follow HF conventions * Remove unneeded Llama code from OLMo model * Add ability for OLMo model to output attentions * Add OLMoPreTrainedModel and OLMoModel * Add OLMoForCausalLM * Minor fixes to OLMo model for style and missing functions * Implement OLMo tokenizer * Implement OLMo to HF conversion script * Add tests for OLMo model * Add tests for OLMo fast tokenizer * Add auto-generated dummy objects * Remove unimplemented OLMo classes from auto and init classes and re-format * Add README and associated auto-generated files * Use OLMo names for common properties * Run make fixup * Remove `|` from OLMo typing * Remove unneeded tokenization_olmo.py * Revert model, config and converter to add-new-model-like Llama * Move logic for adding bos/eos token into GPTNeoxTokenizerFast * Change OLMoConfig defaults to match OLMo-7B * Use GPTNeoXToknizerFast in OLMo tokenizer tests * Modify auto-generated OLMoModelTests to work for OLMo * Add non-parametric layer norm OLMoLayerNorm * Update weight conversion script for OLMo * Fix __init__ and auto structure for OLMo * Fix errors from make fixup * Remove OLMoTokenizerFast from documentation * Add missing 'Copied from' for OLMoModel._update_causal_mask * Run make fix-copies * Rearrange string replacements in OLMoForCausalLM Copied from * Move OLMo and Llama CausalLM.forward example into global constants * Fix OLMO_GENERATION_EXAMPLE doc string typo * Add option for qkv clipping to OLMo * Rearrange OLMoConfig kwargs in convert_olmo_weights_to_hf * Add clip_qkv to OLMoConfig in convert_olmo_weights_to_hf * Fix OLMo tokenization bug using conversion script * Keep model in full precision after conversion * Do not add eos token automatically * Update references to OLMo model in HF Hub * Do not add eos token during encoding by default * Fix Llama generation example * Run make fixup * OLMo 7B integration test fix * Remove unneeded special case for OLMoConfig * OLMo 7B Twin 2T integration test fix * Fix test_model_7b_greedy_generation * Remove test_compile_static_cache * Fix OLMo and Llama generation example * Run make fixup * Revert "OLMo 7B integration test fix" This reverts commit 4df56a4b150681bfa559846f40e9b7b7f97d7908. * Revert "OLMo 7B Twin 2T integration test fix" This reverts commit 9ff65a4a294ace89ab047b793ca55e623a9ceefc. * Ungate 7B integration tests and fix greedy generation test * Add retries for flaky test_eager_matches_sdpa_generate * Fix output of doc example for OLMoForCausalLM.forward * Downsize OLMo doc test for OLMoForCausalLM.forward to 1B model * Try fix incorrect characters in OLMoForCausalLM.forward doct test * Try fix incorrect characters in OLMoForCausalLM.forward doc test using end quotes * Remove pretraining_tp from OLMo config and model * Add missing 'Copied from' instances * Remove unneeded causal_mask from OLMoModel * Revert Llama changes * Ignore copy for OLMoForCausalLM.forward * Change 'OLMo' to 'Olmo' in classes * Move minimal OLMo tokenization tests to model tests * Add missed 'Copied from' for repeat_kv
-
Pavel Iakubovskii authored
* Add evaluation loop container for interm. results * Add tests for EvalLoopContainer * Formatting * Fix padding_index in test and typo * Move EvalLoopContainer to pr_utils to avoid additional imports * Fix `eval_do_concat_batches` arg description * Fix EvalLoopContainer import
-