- 02 Apr, 2020 1 commit
-
-
Patrick von Platen authored
* replace heavy t5 models with tiny random models as was done by sshleifer * fix isort
-
- 01 Apr, 2020 7 commits
-
-
Patrick von Platen authored
* change tf t5 argument naming for TF 2.2 * correct bug in testing
-
Patrick von Platen authored
-
Anirudh Srinivasan authored
-
Patrick von Platen authored
[T5, Testst] Add extensive hard-coded integration tests and make sure PT and TF give equal results (#3550) * add some t5 integration tests * finish summarization and translation integration tests for T5 - results loook good * add tf test * fix == vs is bug * fix tf beam search error and make tf t5 tests pass
-
HUSEIN ZOLKEPLI authored
* add bert bahasa readme * update readme * update readme * added xlnet * added tiny-bert and fix xlnet readme
-
Manuel Romero authored
Create model card for: distilbert-multi-finetuned-for-xqua-on-tydiqa
-
Julien Chaumond authored
* Start cleaning examples * Fixup
-
- 31 Mar, 2020 16 commits
-
-
Patrick von Platen authored
* add bad words list * make style * add bad_words_tokens * make style * better naming * make style * fix typo
-
Patrick von Platen authored
* fix conflicts * add model size argument to summarization * correct wrong import * fix isort * correct imports * other isort make style * make style
-
Manuel Romero authored
- Show that the last uploaded version was trained on more data (custom_license files)
-
Patrick von Platen authored
-
Patrick von Platen authored
-
Patrick von Platen authored
-
Patrick von Platen authored
-
Manuel Romero authored
Fix typo
-
Manuel Romero authored
-
Branden Chan authored
* Create README.md * Update README.md
-
Manuel Romero authored
-
Gabriele Sarti authored
-
Manuel Romero authored
-
Manuel Romero authored
-
Sho Arora authored
-
Leandro von Werra authored
* feat: add model card bert-imdb * feat: add model card gpt2-imdb-pos * feat: add model card gpt2-imdb
-
- 30 Mar, 2020 11 commits
-
-
Ethan Perez authored
* Using loaded checkpoint with --do_predict Without this fix, I'm getting near-random validation performance for a trained model, and the validation performance differs per validation run. I think this happens since the `model` variable isn't set with the loaded checkpoint, so I'm using a randomly initialized model. Looking at the model activations, they differ each time I run evaluation (but they don't with this fix). * Update checkpoint loading * Fixing model loading
-
Sam Shleifer authored
-
dougian authored
Co-authored-by:Ioannis Douratsos <ioannisd@amazon.com>
-
Julien Chaumond authored
-
Julien Plu authored
* Update the NER TF script to remove the softmax and make the pad token label id to -1 * Reformat the quality and style Co-authored-by:Julien Plu <julien.plu@adevinta.com>
-
LysandreJik authored
-
LysandreJik authored
-
LysandreJik authored
-
Patrick von Platen authored
-
Patrick von Platen authored
* make decoder input ids optional for t5 training * lm_lables should not be shifted in t5 * add tests * finish shift right functionality for PT T5 * move shift right to correct class * cleaner code * replace -100 values with pad token id * add assert statement * remove unnecessary for loop * make style
-
Patrick von Platen authored
* Add clear description of how to train T5 * correct docstring in T5 * correct typo * correct docstring format * update t5 model docs * implement collins feedback * fix typo and add more explanation for sentinal tokens * delete unnecessary todos
-
- 29 Mar, 2020 2 commits
-
-
Sam Shleifer authored
-
Sam Shleifer authored
-
- 27 Mar, 2020 3 commits
-
-
Stefan Schweter authored
-
Patrick von Platen authored
* force bleu * fix wrong file name * rename file * different filenames for each example test * test files should clean up after themselves * test files should clean up after themselves * do not force bleu * correct typo * fix isort
-
Patrick von Platen authored
-