1. 29 Apr, 2022 1 commit
  2. 25 Apr, 2022 2 commits
  3. 22 Apr, 2022 1 commit
  4. 13 Apr, 2022 1 commit
  5. 12 Apr, 2022 1 commit
  6. 11 Apr, 2022 1 commit
  7. 06 Apr, 2022 1 commit
  8. 16 Mar, 2022 2 commits
  9. 11 Mar, 2022 1 commit
    • Kevin Bondzio's avatar
      Add soft length regulation for sequence generation (#15245) · 9442b3ce
      Kevin Bondzio authored
      
      
      * add possibility to softly regulate length when using sampling method in model.generate() function
      
      * fix test config, fix formatting
      
      * fix rag integration, fix docstyling
      
      * fix wrong docstring
      
      * change param to tuple, add test
      
      * fix old param in rag_model, remove unused import
      
      * change test according to new param
      
      * fix formatting
      
      * fix test case
      
      * fix doc style
      
      * move start_length calculation to Logitprocessor
      
      * add possibility to softly regulate length when using sampling method in model.generate() function
      
      * fix rag integration, fix docstyling
      
      * fix test config, fix formatting
      
      * change param to tuple, add test
      
      * fix old param in rag_model, remove unused import
      
      * add possibility to softly regulate length when using sampling method in model.generate() function
      
      * change param to tuple, add test
      
      * fix old param in rag_model, remove unused import
      
      * remove unused import
      
      * fix small errors
      
      * fix test
      
      * add possibility to softly regulate length when using sampling method in model.generate() function
      
      * fix test config, fix formatting
      
      * fix rag integration, fix docstyling
      
      * change param to tuple, add test
      
      * fix old param in rag_model, remove unused import
      
      * change test according to new param
      
      * fix test case
      
      * move start_length calculation to Logitprocessor
      
      * add possibility to softly regulate length when using sampling method in model.generate() function
      
      * fix rag integration, fix docstyling
      
      * fix test config, fix formatting
      
      * change param to tuple, add test
      
      * fix old param in rag_model, remove unused import
      
      * add possibility to softly regulate length when using sampling method in model.generate() function
      
      * fix test config, fix formatting
      
      * fix rag integration, fix docstyling
      
      * add possibility to softly regulate length when using sampling method in model.generate() function
      
      * fix rag integration, fix docstyling
      
      * change param to tuple, add test
      
      * fix old param in rag_model, remove unused import
      
      * fix small errors
      
      * Update src/transformers/generation_utils.py
      Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>
      
      * Update src/transformers/generation_utils.py
      
      * Update src/transformers/generation_utils.py
      
      * fix docstring, add type ind model rag
      
      * fix docstrings
      
      * introduce seq_length variable for cleaner code
      
      * fix black formatting
      
      * add input_ids_seq_length to modeling_rag
      
      * add input_ids_seq_length to test
      
      * retrigger checks
      
      * retrigger checks
      Co-authored-by: default avatarKevin Bondzio <kev@AIM-LAP-02.local>
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>
      Co-authored-by: default avatarKevin Bondzio <kev@AIM-LAP-02.fritz.box>
      9442b3ce
  10. 07 Mar, 2022 1 commit
  11. 04 Mar, 2022 1 commit
    • Chan Woo Kim's avatar
      Constrained Beam Search [*With* Disjunctive Decoding] (#15761) · 5c6f57ee
      Chan Woo Kim authored
      
      
      * added classes to get started with constrained beam search
      
      * in progress, think i can directly force tokens now but not yet with the round robin
      
      * think now i have total control, now need to code the bank selection
      
      * technically works as desired, need to optimize and fix design choices leading to undersirable outputs
      
      * complete PR #1 without disjunctive decoding
      
      * removed incorrect tests
      
      * Delete k.txt
      
      * Delete test.py
      
      * Delete test.sh
      
      * revert changes to test scripts
      
      * genutils
      
      * full implementation with testing, no disjunctive yet
      
      * shifted docs
      
      * passing all tests realistically ran locally
      
      * removing accidentally included print statements
      
      * fixed source of error in initial PR test
      
      * fixing the get_device() vs device trap
      
      * fixed documentation docstrings about constrained_beam_search
      
      * fixed tests having failing for Speech2TextModel's floating point inputs
      
      * fix cuda long tensor
      
      * added examples and testing for them and founx & fixed a bug in beam_search and constrained_beam_search
      
      * deleted accidentally added test halting code with assert False
      
      * code reformat
      
      * Update tests/test_generation_utils.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update tests/test_generation_utils.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update tests/test_generation_utils.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update tests/test_generation_utils.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update tests/test_generation_utils.py
      
      * fixing based on comments on PR
      
      * took out the testing code that should but work fails without the beam search moditification ; style changes
      
      * fixing comments issues
      
      * docstrings for ConstraintListState
      
      * typo in PhrsalConstraint docstring
      
      * docstrings improvements
      
      * finished adding what is sort of an opinionated implementation of disjunctive generation, but it revealed errors in inner beam search logic during testing.
      
      * fixed bug found in constrained beam search that used beam_idx that were not global across all the batches
      
      * disjunctive constraint working 100% correctly
      
      * passing all tests
      
      * Accidentally included mlruns
      
      * Update src/transformers/generation_beam_constraints.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update src/transformers/generation_beam_constraints.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * complete overhaul of type complexities and other nits
      
      * strict type checks in generate()
      
      * fixing second round of feedback by narsil
      
      * fixed failing generation test because of type check overhaul
      
      * generation test fail fix
      
      * fixing test fails
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      5c6f57ee
  12. 02 Mar, 2022 1 commit
  13. 23 Feb, 2022 1 commit