1. 23 Jan, 2024 8 commits
  2. 22 Jan, 2024 10 commits
  3. 21 Jan, 2024 1 commit
  4. 19 Jan, 2024 12 commits
  5. 18 Jan, 2024 9 commits
    • Yoach Lacombe's avatar
      Making CTC training example more general (#28582) · 772307be
      Yoach Lacombe authored
      
      
      * add w2v2bert compatibility
      
      * Update examples/pytorch/speech-recognition/run_speech_recognition_ctc.py
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      ---------
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      772307be
    • Sanchit Gandhi's avatar
      [Whisper] Fix audio classification with weighted layer sum (#28563) · 186aa6be
      Sanchit Gandhi authored
      * fix
      
      * tests
      
      * fix test
      186aa6be
    • Sanchit Gandhi's avatar
      [Whisper Tok] Move token ids to CPU when computing offsets (#28485) · 619ecfe2
      Sanchit Gandhi authored
      * move token ids to cpu
      
      * check for torch attr
      619ecfe2
    • Sanchit Gandhi's avatar
      [ASR Pipe] Update init to set model type and subsequently call parent init method (#28486) · 0eaa5ea3
      Sanchit Gandhi authored
      * add image processor arg
      
      * super
      
      * rm args
      0eaa5ea3
    • Jeremy Fowers's avatar
      Fix the documentation checkpoint for xlm-roberta-xl (#28567) · c662c78c
      Jeremy Fowers authored
      * Fix the documentation checkpoint for xlm-roberta-xl
      
      * Improve docstring consistency
      c662c78c
    • Yih-Dar's avatar
      Use `LoggingLevel` context manager in 3 tests (#28575) · 0754217c
      Yih-Dar authored
      
      
      * inside with LoggingLevel
      
      * remove is_flaky
      
      ---------
      Co-authored-by: default avatarydshieh <ydshieh@users.noreply.github.com>
      0754217c
    • Yoach Lacombe's avatar
      Add new meta w2v2-conformer BERT-like model (#28165) · d2cdefb9
      Yoach Lacombe authored
      
      
      * first commit
      
      * correct default value non causal
      
      * update config and modeling code
      
      * update converting checkpoint
      
      * clean modeling and fix tests
      
      * make style
      
      * add new config parameters to docstring
      
      * fix copied from statements
      
      * Apply suggestions from code review
      Co-authored-by: default avatarSanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
      
      * make position_embeddings_type docstrings clearer
      
      * clean converting script
      
      * remove function not used
      
      * clean modeling file
      
      * apply suggestion for test file + add convert script to not_doctested
      
      * modify tests according to review - cleaner logic and more tests
      
      * Apply nit suggestions from code review
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * add checker of valid position embeddings type
      
      * instantiate new layer norm layer with the right eps
      
      * fix freeze_feature_encoder since it can be None in some cases
      
      * add test same output in convert script
      
      * restore wav2vec2conformer and add new model
      
      * create processor and FE + clean
      
      * add new model code
      
      * fix convert script and set default config parameters
      
      * correct model id paths
      
      * make style
      
      * make fix-copies and cleaning files
      
      * fix copied from statements
      
      * complete .md and fixe copies
      
      * clean convert script argument defaults
      
      * fix config parameters docstrings
      
      * fix config docstring
      
      * add copied from and enrich FE tests
      
      * fix copied from and repo-consistency
      
      * add autotokenizer
      
      * make test input length shorter and change docstring code
      
      * fix docstrings and copied from
      
      * add add_adapter to ASR training example
      
      * make testing of adapters more robust
      
      * adapt to multi adapter layers
      
      * refactor input_values->input_features and remove w2v2-bert feature extractor
      
      * remove pretraining model
      
      * remove depreciated features and useless lines
      
      * add copied from and ignore statements to modeling tests
      
      * remove pretraining model #2
      
      * change import in convert script
      
      * change default in convert script
      
      * update readme and remove useless line
      
      * Update tests/models/wav2vec2_bert/test_processor_wav2vec2_bert.py
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * refactor BERT to Bert for consistency
      
      * remove useless ignore copy statement
      
      * add persistent to buffer in rotary
      
      * add eps in LayerNorm init and remove copied from
      
      * add adapter activation parameters and add copied from statements
      
      * Fix copied statements and add unitest.skip reasons
      
      * add copied statement in test_processor
      
      * refactor processor
      
      * make style
      
      * replace numpy random by torch rand
      
      * remove expected output CTC
      
      * improve converting script with processor class
      
      * Apply suggestions from code review
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * remove gumbel class
      
      * remove tests related to previously deleted class
      
      * Update src/transformers/models/wav2vec2_bert/configuration_wav2vec2_bert.py
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * correct typos
      
      * remove uused parameters
      
      * update processor to takes both text and audio
      
      * update checkpoints
      
      * update expected output and add ctc expected output
      
      * add label_attention_mask
      
      * replace pt with np in processor tests
      
      * fix typo
      
      * revert to behaviour with labels_attention_mask
      
      ---------
      Co-authored-by: default avatarSanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      d2cdefb9
    • hugo-syn's avatar
      chore: Fix multiple typos (#28574) · 5d8eb93e
      hugo-syn authored
      5d8eb93e
    • Arthur's avatar
      [`Core Tokenization`] Support a fix for spm fast models (#26678) · 81899778
      Arthur authored
      * fix
      
      * last attempt
      
      * current work
      
      * fix forward compatibility
      
      * save all special tokens
      
      * current state
      
      * revert additional changes
      
      * updates
      
      * remove tokenizer.model
      
      * add a test and the fix
      
      * nit
      
      * revert one more break
      
      * fix typefield issue
      
      * quality
      
      * more tests
      
      * fix fields for FC
      
      * more nits?
      
      * new additional changes
      
      * how
      
      * some updates
      
      * the fix
      
      * where do we stand
      
      * nits
      
      * nits
      
      * revert unrelated changes
      
      * nits nits nits
      
      * styling
      
      * don't break llama just yet
      
      * revert llama changes
      
      * safe arg check
      
      * fixup
      
      * Add a test for T5
      
      * Necessary changes
      
      * Tests passing, added tokens need to not be normalized. If the added tokens are normalized, it will the stripping which seems to be unwanted for a normal functioning
      
      * Add even more tests, when normalization is set to True (which does not work 馃槗 )
      
      * Add even more tests, when normalization is set to True (which does not work 馃槗 )
      
      * Update to main
      
      * nits
      
      * fmt
      
      * more and more test
      
      * comments
      
      * revert change as tests are failing
      
      * make the test more readble
      
      * nits
      
      * refactor the test
      
      * nit
      
      * updates
      
      * simplify
      
      * style
      
      * style
      
      * style convert slow
      
      * Update src/transformers/convert_slow_tokenizer.py
      81899778