1. 25 Mar, 2024 1 commit
  2. 23 Mar, 2024 1 commit
  3. 20 Mar, 2024 2 commits
    • NielsRogge's avatar
      Add LLaVa-1.6, bis (#29586) · d91fd7f9
      NielsRogge authored
      
      
      * First draft
      
      * Fix tests, add docs
      
      * Improve docstrings
      
      * Fix test
      
      * Address comments
      
      * Address comments
      
      * Remove vocab_size attribute
      
      * Remove batch_size
      
      * Address comment
      
      * Add image processor tests
      
      * Support fx
      
      * Update docstring
      
      * Add support for 34b
      
      * Convert 34b model
      
      * Add integration tests
      
      * Update checkpoints
      
      * Convert vicuna-13b, remove doc tests
      
      * Remove script
      
      * Remove file
      
      * Address comments
      
      * Improve docstrings
      
      * Deprecate vocab_size
      
      * Remove aspect_ratio_setting
      
      * Address comments
      
      * Update READMEs
      
      * Add tips about chat templates
      
      * Fix tests
      
      * Deprecate vocab_size safely
      
      * Update tests
      
      ---------
      Co-authored-by: default avatarAmy Roberts <22614925+amyeroberts@users.noreply.github.com>
      d91fd7f9
    • amyeroberts's avatar
      3c17c529
  4. 19 Mar, 2024 1 commit
    • StevenBucaille's avatar
      Implementation of SuperPoint and AutoModelForKeypointDetection (#28966) · 56baa033
      StevenBucaille authored
      
      
      * Added SuperPoint docs
      
      * Added tests
      
      * Removed commented part
      
      * Commit to create and fix add_superpoint branch with a new branch
      
      * Fixed dummy_pt_objects
      
      * Committed missing files
      
      * Fixed README.md
      
      * Apply suggestions from code review
      
      Fixed small changes
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * Moved ImagePointDescriptionOutput from modeling_outputs.py to modeling_superpoint.py
      
      * Removed AutoModelForKeypointDetection and related stuff
      
      * Fixed inconsistencies in image_processing_superpoint.py
      
      * Moved infer_on_model logic simply in test_inference
      
      * Fixed bugs, added labels to forward method with checks whether it is properly a None value, also added tests about this logic in test_modeling_superpoint.py
      
      * Added tests to SuperPointImageProcessor to ensure that images are properly converted to grayscale
      
      * Removed remaining mentions of MODEL_FOR_KEYPOINT_DETECTION_MAPPING
      
      * Apply suggestions from code review
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * Fixed from (w, h) to (h, w) as input for tests
      
      * Removed unnecessary condition
      
      * Moved last_hidden_state to be the first returned
      
      * Moved last_hidden_state to be the first returned (bis)
      
      * Moved last_hidden_state to be the first returned (ter)
      
      * Switched image_width and image_height in tests to match recent changes
      
      * Added config as first SuperPointConvBlock init argument
      
      * Reordered README's after merge
      
      * Added missing first config argument to SuperPointConvBlock instantiations
      
      * Removed formatting error
      
      * Added SuperPoint to README's de, pt-br, ru, te and vi
      
      * Checked out README_fr.md
      
      * Fixed README_fr.md
      
      * Test fix README_fr.md
      
      * Test fix README_fr.md
      
      * Last make fix-copies !
      
      * Updated checkpoint path
      
      * Removed unused SuperPoint doc
      
      * Added missing image
      
      * Update src/transformers/models/superpoint/modeling_superpoint.py
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * Removed unnecessary import
      
      * Update src/transformers/models/superpoint/modeling_superpoint.py
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * Added SuperPoint to _toctree.yml
      
      ---------
      Co-authored-by: default avatarsteven <steven.bucaillle@gmail.com>
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      Co-authored-by: default avatarSteven Bucaille <steven.bucaille@buawei.com>
      56baa033
  5. 18 Mar, 2024 1 commit
    • Yoach Lacombe's avatar
      Add MusicGen Melody (#28819) · c43b380e
      Yoach Lacombe authored
      
      
      * first modeling code
      
      * make repository
      
      * still WIP
      
      * update model
      
      * add tests
      
      * add latest change
      
      * clean docstrings and copied from
      
      * update docstrings md and readme
      
      * correct chroma function
      
      * correct copied from and remove unreleated test
      
      * add doc to toctree
      
      * correct imports
      
      * add convert script to notdoctested
      
      * Add suggestion from Sanchit
      Co-authored-by: default avatarSanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
      
      * correct get_uncoditional_inputs docstrings
      
      * modify README according to SANCHIT feedback
      
      * add chroma to audio utils
      
      * clean librosa and torchaudio hard dependencies
      
      * fix FE
      
      * refactor audio decoder -> audio encoder for consistency with previous musicgen
      
      * refactor conditional -> encoder
      
      * modify sampling rate logics
      
      * modify license at the beginning
      
      * refactor all_self_attns->all_attentions
      
      * remove ignore copy from causallm generate
      
      * add copied from for from_sub_models
      
      * fix make copies
      
      * add warning if audio is truncated
      
      * add copied from where relevant
      
      * remove artefact
      
      * fix convert script
      
      * fix torchaudio and FE
      
      * modify chroma method according to feedback-> better naming
      
      * refactor input_values->input_features
      
      * refactor input_values->input_features and fix import fe
      
      * add input_features to docstrigs
      
      * correct inputs_embeds logics
      
      * remove dtype conversion
      
      * refactor _prepare_conditional_hidden_states_kwargs_for_generation ->_prepare_encoder_hidden_states_kwargs_for_generation
      
      * change warning for chroma length
      
      * Update src/transformers/models/musicgen_melody/convert_musicgen_melody_transformers.py
      Co-authored-by: default avatarSanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
      
      * change way to save wav, using soundfile
      
      * correct docs and change to soundfile
      
      * fix import
      
      * fix init proj layers
      
      * remove line breaks from md
      
      * fix issue with docstrings
      
      * add FE suggestions
      
      * improve is in logics and remove useless imports
      
      * remove custom from_pretrained
      
      * simplify docstring code
      
      * add suggestions for modeling tests
      
      * make style
      
      * update converting script with sanity check
      
      * remove encoder attention mask from conditional generation
      
      * replace musicgen melody checkpoints with official orga
      
      * rename ylacombe->facebook in checkpoints
      
      * fix copies
      
      * remove unecessary warning
      
      * add shape in code docstrings
      
      * add files to slow doc tests
      
      * fix md bug and add md to not_tested
      
      * make fix-copies
      
      * fix hidden states test and batching
      
      ---------
      Co-authored-by: default avatarSanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
      c43b380e
  6. 15 Mar, 2024 1 commit
    • Saurabh Dash's avatar
      Cohere Model Release (#29622) · 0e4a1c34
      Saurabh Dash authored
      
      
      * Cohere Model Release (#1)
      
      Cohere Model Release
      
      * Remove unnecessary files and code (#2)
      
      Some cleanup
      
      * Delete cohere-model directory (#3)
      
      * Make Fix (#5)
      
      * Pr fixes (#6)
      
      * fixes for pr
      
      * pr fixes for the format
      
      * pr fixes for the format
      
      * src/transformers/models/auto/tokenization_auto.py
      
      * Tokenizer test (#8)
      
      * tokenizer test
      
      * format fix
      
      * Adding Docs and other minor changes (#7)
      
      * Add modeling tests (#9)
      
      * Smol Fix (#11)
      
      * tokenization tests are fixed
      
      * format fixes
      
      * fix pr doc tests
      
      * fix pr doc tests
      
      * fix pr doc tests
      
      * fix pr style check
      
      * small changes in cohere.md
      
      * FIX: Address final comments for transformers integration (#13)
      
      * fix modeling final nits and add proper test file
      
      * for now leave empty tests
      
      * add integration test
      
      * push new test
      
      * fix modeling cohere (#14)
      
      * Update chat templates to use the new API (#15)
      
      ---------
      Co-authored-by: default avatarahmetustun <ahmetustun89@gmail.com>
      Co-authored-by: default avatarYounes Belkada <49240599+younesbelkada@users.noreply.github.com>
      Co-authored-by: default avatarMatt <Rocketknight1@users.noreply.github.com>
      0e4a1c34
  7. 13 Mar, 2024 2 commits
    • Nate Cibik's avatar
      Add PvT-v2 Model (#26812) · 1fc505b8
      Nate Cibik authored
      
      
      * Added pytests for pvt-v2, all passed
      
      * Added pvt_v2 to docs/source/end/model_doc
      
      * Ran fix-copies and fixup. All checks passed
      
      * Added additional ReLU for linear attention mode
      
      * pvt_v2_b2_linear converted and working
      
      * copied models/pvt to adapt to pvt_v2
      
      * First commit of pvt_v2
      
      * PvT-v2 now works in AutoModel
      
      * Reverted batch eval changes for PR
      
      * Expanded type support for Pvt-v2 config
      
      * Fixed config docstring. Added channels property
      
      * Fixed model names in tests
      
      * Fixed config backbone compat. Added additional type support for image size in config
      
      * Fixed config backbone compat
      
      * Allowed for batching of eval metrics
      
      * copied models/pvt to adapt to pvt_v2
      
      * First commit of pvt_v2
      
      * Set key and value layers to use separate linear modules. Fixed pruning function
      
      * Set AvgPool to 7
      
      * Fixed issue in init
      
      * PvT-v2 now works in AutoModel
      
      * Successful conversion of pretrained weights for PVT-v2
      
      * Successful conversion of pretrained weights for PVT-v2 models
      
      * Added pytests for pvt-v2, all passed
      
      * Ran fix-copies and fixup. All checks passed
      
      * Added additional ReLU for linear attention mode
      
      * pvt_v2_b2_linear converted and working
      
      * Allowed for batching of eval metrics
      
      * copied models/pvt to adapt to pvt_v2
      
      * First commit of pvt_v2
      
      * Set key and value layers to use separate linear modules. Fixed pruning function
      
      * Set AvgPool to 7
      
      * Fixed issue in init
      
      * PvT-v2 now works in AutoModel
      
      * Successful conversion of pretrained weights for PVT-v2
      
      * Successful conversion of pretrained weights for PVT-v2 models
      
      * Added pytests for pvt-v2, all passed
      
      * Ran fix-copies and fixup. All checks passed
      
      * Added additional ReLU for linear attention mode
      
      * pvt_v2_b2_linear converted and working
      
      * Reverted batch eval changes for PR
      
      * Updated index.md
      
      * Expanded type support for Pvt-v2 config
      
      * Fixed config docstring. Added channels property
      
      * Fixed model names in tests
      
      * Fixed config backbone compat
      
      * Ran fix-copies
      
      * Fixed PvtV2Backbone tests
      
      * Added TFRegNet to OBJECTS_TO_IGNORE in check_docstrings.py
      
      * Fixed backbone stuff and fixed tests: all passing
      
      * Ran make fixup
      
      * Made modifications for code checks
      
      * Remove ONNX config from configuration_pvt_v2.py
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * Use explicit image size dict in test_modeling_pvt_v2.py
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * Make image_size optional in test_modeling_pvt_v2.py
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * Remove _ntuple use in modeling_pvt_v2.py
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * Remove reference to fp16_enabled
      
      * Model modules now take config as first argument even when not used
      
      * Replaced abbreviations for "SR" and "AP" with explicit "spatialreduction" and "averagepooling"
      
      * All LayerNorm now instantiates with config.layer_norm_eps
      
      * Added docstring for depth-wise conv layer
      
      * PvtV2Config now only takes Union[int, Tuple[int, int]] for image size
      
      * Refactored PVTv2 in prep for gradient checkpointing
      
      * Gradient checkpointing ready to test
      
      * Removed override of _set_gradient_checkpointing
      
      * Cleaned out old code
      
      * Applied code fixup
      
      * Applied code fixup
      
      * Began debug of pvt_v2 tests
      
      * Leave handling of num_labels to base pretrained config class
      
      * Deactivated gradient checkpointing tests until it is fixed
      
      * Removed PvtV2ImageProcessor which duped PvtImageProcessor
      
      * Allowed for batching of eval metrics
      
      * copied models/pvt to adapt to pvt_v2
      
      * First commit of pvt_v2
      
      * Set key and value layers to use separate linear modules. Fixed pruning function
      
      * Set AvgPool to 7
      
      * Fixed issue in init
      
      * PvT-v2 now works in AutoModel
      
      * Successful conversion of pretrained weights for PVT-v2
      
      * Successful conversion of pretrained weights for PVT-v2 models
      
      * Added pytests for pvt-v2, all passed
      
      * Added pvt_v2 to docs/source/end/model_doc
      
      * Ran fix-copies and fixup. All checks passed
      
      * Added additional ReLU for linear attention mode
      
      * pvt_v2_b2_linear converted and working
      
      * copied models/pvt to adapt to pvt_v2
      
      * First commit of pvt_v2
      
      * PvT-v2 now works in AutoModel
      
      * Reverted batch eval changes for PR
      
      * Expanded type support for Pvt-v2 config
      
      * Fixed config docstring. Added channels property
      
      * Fixed model names in tests
      
      * Fixed config backbone compat. Added additional type support for image size in config
      
      * Fixed config backbone compat
      
      * Allowed for batching of eval metrics
      
      * copied models/pvt to adapt to pvt_v2
      
      * First commit of pvt_v2
      
      * Set key and value layers to use separate linear modules. Fixed pruning function
      
      * Set AvgPool to 7
      
      * Fixed issue in init
      
      * PvT-v2 now works in AutoModel
      
      * Successful conversion of pretrained weights for PVT-v2
      
      * Successful conversion of pretrained weights for PVT-v2 models
      
      * Added pytests for pvt-v2, all passed
      
      * Ran fix-copies and fixup. All checks passed
      
      * Added additional ReLU for linear attention mode
      
      * pvt_v2_b2_linear converted and working
      
      * Allowed for batching of eval metrics
      
      * copied models/pvt to adapt to pvt_v2
      
      * First commit of pvt_v2
      
      * Set key and value layers to use separate linear modules. Fixed pruning function
      
      * Set AvgPool to 7
      
      * Fixed issue in init
      
      * PvT-v2 now works in AutoModel
      
      * Successful conversion of pretrained weights for PVT-v2
      
      * Successful conversion of pretrained weights for PVT-v2 models
      
      * Added pytests for pvt-v2, all passed
      
      * Ran fix-copies and fixup. All checks passed
      
      * Added additional ReLU for linear attention mode
      
      * pvt_v2_b2_linear converted and working
      
      * Reverted batch eval changes for PR
      
      * Expanded type support for Pvt-v2 config
      
      * Fixed config docstring. Added channels property
      
      * Fixed model names in tests
      
      * Fixed config backbone compat
      
      * Ran fix-copies
      
      * Fixed PvtV2Backbone tests
      
      * Added TFRegNet to OBJECTS_TO_IGNORE in check_docstrings.py
      
      * Fixed backbone stuff and fixed tests: all passing
      
      * Ran make fixup
      
      * Made modifications for code checks
      
      * Remove ONNX config from configuration_pvt_v2.py
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * Use explicit image size dict in test_modeling_pvt_v2.py
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * Make image_size optional in test_modeling_pvt_v2.py
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * Remove _ntuple use in modeling_pvt_v2.py
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * Remove reference to fp16_enabled
      
      * Model modules now take config as first argument even when not used
      
      * Replaced abbreviations for "SR" and "AP" with explicit "spatialreduction" and "averagepooling"
      
      * All LayerNorm now instantiates with config.layer_norm_eps
      
      * Added docstring for depth-wise conv layer
      
      * PvtV2Config now only takes Union[int, Tuple[int, int]] for image size
      
      * Refactored PVTv2 in prep for gradient checkpointing
      
      * Gradient checkpointing ready to test
      
      * Removed override of _set_gradient_checkpointing
      
      * Cleaned out old code
      
      * Applied code fixup
      
      * Applied code fixup
      
      * Allowed for batching of eval metrics
      
      * copied models/pvt to adapt to pvt_v2
      
      * First commit of pvt_v2
      
      * PvT-v2 now works in AutoModel
      
      * Ran fix-copies and fixup. All checks passed
      
      * copied models/pvt to adapt to pvt_v2
      
      * First commit of pvt_v2
      
      * PvT-v2 now works in AutoModel
      
      * Reverted batch eval changes for PR
      
      * Fixed config docstring. Added channels property
      
      * Fixed config backbone compat
      
      * Allowed for batching of eval metrics
      
      * copied models/pvt to adapt to pvt_v2
      
      * First commit of pvt_v2
      
      * PvT-v2 now works in AutoModel
      
      * Ran fix-copies and fixup. All checks passed
      
      * Allowed for batching of eval metrics
      
      * copied models/pvt to adapt to pvt_v2
      
      * First commit of pvt_v2
      
      * PvT-v2 now works in AutoModel
      
      * Fixed config backbone compat
      
      * Ran fix-copies
      
      * Began debug of pvt_v2 tests
      
      * Leave handling of num_labels to base pretrained config class
      
      * Deactivated gradient checkpointing tests until it is fixed
      
      * Removed PvtV2ImageProcessor which duped PvtImageProcessor
      
      * Fixed issue from rebase
      
      * Fixed issue from rebase
      
      * Set tests for gradient checkpointing to skip those using reentrant since it isn't supported
      
      * Fixed issue from rebase
      
      * Fixed issue from rebase
      
      * Changed model name in docs
      
      * Removed duplicate PvtV2Backbone
      
      * Work around type switching issue in tests
      
      * Fix model name in config comments
      
      * Update docs/source/en/model_doc/pvt_v2.md
      Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>
      
      * Changed name of variable from 'attn_reduce' to 'sr_type'
      
      * Changed name of variable from 'attn_reduce' to 'sr_type'
      
      * Changed from using 'sr_type' to 'linear_attention' for clarity
      
      * Update src/transformers/models/pvt_v2/modeling_pvt_v2.py
      
      Removed old code
      
      * Changed from using 'sr_type' to 'linear_attention' for clarity
      
      * Fixed Class names to be more descriptive
      
      * Update src/transformers/models/pvt_v2/modeling_pvt_v2.py
      
      Removed outdated code
      
      * Moved paper abstract to single line in pvt_v2.md
      
      * Added usage tips to pvt_v2.md
      
      * Simplified module inits by passing layer_idx
      
      * Fixed typing for hidden_act in PvtV2Config
      
      * Removed unusued import
      
      * Add pvt_v2 to docs/source/en/_toctree.yml
      
      * Updated documentation in docs/source/en/model_doc/pvt_v2.md to be more comprehensive.
      
      * Updated documentation in docs/source/en/model_doc/pvt_v2.md to be more comprehensive.
      
      * Update src/transformers/models/pvt_v2/modeling_pvt_v2.py
      
      Move function parameters to single line
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * Update src/transformers/models/pvt_v2/modeling_pvt_v2.py
      
      Update year of copyright to 2024
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * Update src/transformers/models/pvt_v2/modeling_pvt_v2.py
      
      Make code more explicit
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * Updated sr_ratio to be more explicit spatial_reduction_ratio
      
      * Removed excess type hints in modeling_pvt_v2.py
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * Move params to single line in modeling_pvt_v2.py
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * Removed needless comment in modeling_pvt_v2.py
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * Update copyright date in pvt_v2.md
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * Moved params to single line in modeling_pvt_v2.py
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * Updated copyright date in configuration_pvt_v2.py
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * Cleaned comments in modeling_pvt_v2.py
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * Renamed spatial_reduction Conv2D operation
      
      * Revert "Update src/transformers/models/pvt_v2/modeling_pvt_v2.py
      "
      
      This reverts commit c4a04416dde8f3475ab405d1feb368600e0f8538.
      
      * Updated conversion script to reflect module name change
      
      * Deprecated reshape_last_stage option in config
      
      * Removed unused imports
      
      * Code formatting
      
      * Fixed outdated decorators on test_inference_fp16
      
      * Added "Copied from" comments in test_modeling_pvt_v2.py
      
      * Fixed import listing
      
      * Updated model name
      
      * Force empty commit for PR refresh
      
      * Fixed linting issue
      
      * Removed # Copied from comments
      
      * Added PVTv2 to README_fr.md
      
      * Ran make fix-copies
      
      * Replace all FoamoftheSea hub references with OpenGVLab
      
      * Fixed out_indices and out_features logic in configuration_pvt_v2.py
      
      * Made ImageNet weight conversion verification optional in convert_pvt_v2_to_pytorch.py
      
      * Ran code fixup
      
      * Fixed order of parent classes in PvtV2Config to fix the to_dict method override
      
      ---------
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>
      1fc505b8
    • Dries Verachtert's avatar
      62478857
  8. 12 Mar, 2024 1 commit
  9. 11 Mar, 2024 2 commits
  10. 06 Mar, 2024 1 commit
  11. 05 Mar, 2024 1 commit
    • Arthur's avatar
      [`Add Mamba`] Adds support for the `Mamba` models (#28094) · fb1c62e9
      Arthur authored
      
      
      * initial-commit
      
      * start cleaning
      
      * small nits
      
      * small nits
      
      * current updates
      
      * add kernels
      
      * small refactoring little step
      
      * add comments
      
      * styling
      
      * nit
      
      * nits
      
      * Style
      
      * Small changes
      
      * Push dummy mambda simple slow
      
      * nit
      
      * Use original names
      
      * Use original names and remove norm
      
      * Updates for inference params
      
      * Style nd updates
      
      * nits
      
      * Match logits
      
      * Add a test
      
      * Add expected generated text
      
      * nits doc, imports and styling
      
      * style
      
      * oups
      
      * dont install kernels, invite users to install the required kernels
      
      * let use use the original packages
      
      * styling
      
      * nits
      
      * fix some copieds
      
      * update doc
      
      * fix-copies
      
      * styling done
      
      * nits
      
      * fix import check
      
      * run but wrong cuda ress
      
      * mamba CUDA works :)
      
      * fix the fast path
      
      * config naming nits
      
      * conversion script is not required at this stage
      
      * finish fixing the fast path: generation make sense now!
      
      * nit
      
      * Let's start working on the CIs
      
      * style
      
      * better style
      
      * more nits
      
      * test nit
      
      * quick fix for now
      
      * nits
      
      * nit
      
      * nit
      
      * nit
      
      * nits
      
      * update test rest
      
      * fixup
      
      * update test
      
      * nit
      
      * some fixes
      
      * nits
      
      * update test values
      
      * fix styling
      
      * nit
      
      * support peft
      
      * integrations tests require torchg
      
      * also add slow markers
      
      * styling
      
      * chose forward wisely
      
      * nits
      
      * update tests
      
      * fix gradient checkpointing
      
      * fixup
      
      * nit
      
      * fix doc
      
      * check copies
      
      * fix the docstring
      
      * fix some more tests
      
      * style
      
      * fix beam search
      
      * add init schene
      
      * update
      
      * nit
      
      * fix
      
      * fixup the doc
      
      * fix the doc
      
      * fixup
      
      * tentative update but slow is no longer good
      
      * nit
      
      * should we always use float32?
      
      * nits
      
      * revert wrong changes
      
      * res in float32
      
      * cleanup
      
      * skip fmt for now
      
      * update generation values
      
      * update test values running original model
      
      * fixup
      
      * update tests + rename inference_params to cache_params + make sure training does not use cache_params
      
      * small nits
      
      * more nits
      
      * fix final CIs
      
      * style
      
      * nit doc
      
      * I hope final doc nits
      
      * nit
      
      * 馃珷
      
      * final touch!
      
      * fix torch import
      
      * Apply suggestions from code review
      Co-authored-by: default avatarLysandre Debut <hi@lysand.re>
      
      * Apply suggestions from code review
      
      * fix fix and fix
      
      * fix base model prefix!
      
      * nit
      
      * Update src/transformers/models/mamba/__init__.py
      
      * Update docs/source/en/model_doc/mamba.md
      Co-authored-by: default avatarLysandre Debut <hi@lysand.re>
      
      * nit
      
      ---------
      Co-authored-by: default avatarLysandre Debut <hi@lysand.re>
      fb1c62e9
  12. 04 Mar, 2024 1 commit
    • NielsRogge's avatar
      Add UDOP (#22940) · 836921fd
      NielsRogge authored
      
      
      * First draft
      
      * More improvements
      
      * More improvements
      
      * More fixes
      
      * Fix copies
      
      * More improvements
      
      * More fixes
      
      * More improvements
      
      * Convert checkpoint
      
      * More improvements, set up tests
      
      * Fix more tests
      
      * Add UdopModel
      
      * More improvements
      
      * Fix equivalence test
      
      * More fixes
      
      * Redesign model
      
      * Extend conversion script
      
      * Use real inputs for conversion script
      
      * Add image processor
      
      * Improve conversion script
      
      * Add UdopTokenizer
      
      * Add fast tokenizer
      
      * Add converter
      
      * Update README's
      
      * Add processor
      
      * Add fully fledged tokenizer
      
      * Add fast tokenizer
      
      * Use processor in conversion script
      
      * Add tokenizer tests
      
      * Fix one more test
      
      * Fix more tests
      
      * Fix tokenizer tests
      
      * Enable fast tokenizer tests
      
      * Fix more tests
      
      * Fix additional_special_tokens of fast tokenizer
      
      * Fix tokenizer tests
      
      * Fix more tests
      
      * Fix equivalence test
      
      * Rename image to pixel_values
      
      * Rename seg_data to bbox
      
      * More renamings
      
      * Remove vis_special_token
      
      * More improvements
      
      * Add docs
      
      * Fix copied from
      
      * Update slow tokenizer
      
      * Update fast tokenizer design
      
      * Make text input optional
      
      * Add first draft of processor tests
      
      * Fix more processor tests
      
      * Fix decoder_start_token_id
      
      * Fix test_initialization
      
      * Add integration test
      
      * More improvements
      
      * Improve processor, add test
      
      * Add more copied from
      
      * Add more copied from
      
      * Add more copied from
      
      * Add more copied from
      
      * Remove print statement
      
      * Update README and auto mapping
      
      * Delete files
      
      * Delete another file
      
      * Remove code
      
      * Fix test
      
      * Fix docs
      
      * Remove asserts
      
      * Add doc tests
      
      * Include UDOP in exotic model tests
      
      * Add expected tesseract decodings
      
      * Add sentencepiece
      
      * Use same design as T5
      
      * Add UdopEncoderModel
      
      * Add UdopEncoderModel to tests
      
      * More fixes
      
      * Fix fast tokenizer
      
      * Fix one more test
      
      * Remove parallelisable attribute
      
      * Fix copies
      
      * Remove legacy file
      
      * Copy from T5Tokenizer
      
      * Fix rebase
      
      * More fixes, copy from T5
      
      * More fixes
      
      * Fix init
      
      * Use ArthurZ/udop for tests
      
      * Make all model tests pass
      
      * Remove UdopForConditionalGeneration from auto mapping
      
      * Fix more tests
      
      * fixups
      
      * more fixups
      
      * fix the tokenizers
      
      * remove un-necessary changes
      
      * nits
      
      * nits
      
      * replace truncate_sequences_boxes with truncate_sequences for fix-copies
      
      * nit current path
      
      * add a test for input ids
      
      * ids that we should get taken from c9f7a32f57440d90ff79890270d376a1cc0acb68
      
      * nits converting
      
      * nits
      
      * apply ruff
      
      * nits
      
      * nits
      
      * style
      
      * fix slow order of addition
      
      * fix udop fast range as well
      
      * fixup
      
      * nits
      
      * Add docstrings
      
      * Fix gradient checkpointing
      
      * Update code examples
      
      * Skip tests
      
      * Update integration test
      
      * Address comment
      
      * Make fixup
      
      * Remove extra ids from tokenizer
      
      * Skip test
      
      * Apply suggestions from code review
      Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>
      
      * Update year
      
      * Address comment
      
      * Address more comments
      
      * Address comments
      
      * Add copied from
      
      * Update CI
      
      * Rename script
      
      * Update model id
      
      * Add AddedToken, skip tests
      
      * Update CI
      
      * Fix doc tests
      
      * Do not use Tesseract for the doc tests
      
      * Remove kwargs
      
      * Add original inputs
      
      * Update casting
      
      * Fix doc test
      
      * Update question
      
      * Update question
      
      * Use LayoutLMv3ImageProcessor
      
      * Update organization
      
      * Improve docs
      
      * Update forward signature
      
      * Make images optional
      
      * Remove deprecated device argument
      
      * Add comment, add add_prefix_space
      
      * More improvements
      
      * Remove kwargs
      
      ---------
      Co-authored-by: default avatarArthurZucker <arthur.zucker@gmail.com>
      Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>
      836921fd
  13. 28 Feb, 2024 1 commit
  14. 26 Feb, 2024 2 commits
  15. 23 Feb, 2024 1 commit
  16. 22 Feb, 2024 1 commit
  17. 21 Feb, 2024 1 commit
    • Arthur's avatar
      [ `gemma`] Adds support for Gemma 馃拵 (#29167) · 594c1277
      Arthur authored
      * inital commit
      
      * update
      
      * update conversion checkpoint
      
      * update conversion script
      
      * nits
      
      * some fixes
      
      * nits
      
      * merge
      
      * fix permute
      
      * nits
      
      * fix
      
      * nits
      
      * nits
      
      * nits
      
      * fix rope
      
      * fix both rope
      
      * nites
      
      * style
      
      * make sure flax works
      
      * fix flax init code
      
      * fix foward
      
      * nits
      
      * print flax generation out
      
      * current code
      
      * nits
      
      * SIIIIIIIIIIIIIIIIIII
      
      * update
      
      * add new tokenizer
      
      * correct fast tokenizer
      
      * fix conversion
      
      * more comments
      
      * fix modeling and conversion
      
      * nits and nits
      
      * nits testing
      
      * add some tokenization tests
      
      * add some edge cases
      
      * add slow tests and fix them
      
      * fixup
      
      * fix copies for modeling
      
      * fix copies
      
      * add 7B slow tests
      
      * fix
      
      * fix
      
      * fix tests
      
      * make tokenizer cis go green
      
      * styling
      
      * last tokenizer nits
      
      * update jax tests
      
      * fix flax for 7b
      
      * add jit testing 馃
      
      
      
      * cleanups
      
      * isolated nit, inv_freq for rotary_emb.inv_freq
      
      * propagate to jax
      
      * Apply suggestions from code review
      Co-authored-by: default avatarSanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
      
      * adjust test
      
      * fix conversion script
      
      * change name
      
      * correct file names
      
      * update conversion script
      
      * Fix bos and eos token ids in the model configuration (#3)
      
      * update modelling
      
      * update conversion script
      
      * add static cache for gemma
      
      * fix sdpa generate
      
      * fix batched
      
      * multiple fixes
      
      * fix FA2
      
      * final fix
      
      * Rename a few missing strings and filenames (#4)
      
      * merge with upstream main
      
      * fix copies
      
      * fix copies
      
      * fix fixup
      
      * fix fixup
      
      * fix
      
      * fix
      
      * final tests
      
      * fix fx gemma tests
      
      * fix fx bf16/fp16 tests
      
      * update slow fx tests
      
      * fx slow tests: one logits, one generation
      
      * move jit test standalone
      
      * Apply suggestions from code review
      
      * nits
      
      * tokenizer updates
      
      * more tokenization updates: custom GemmaSentencepieceExtrator
      
      * style
      
      * Update src/transformers/cache_utils.py
      
      * Update src/transformers/models/gemma/__init__.py
      
      * Update tests/models/gemma/test_modeling_flax_gemma.py
      
      * small nits
      
      * style
      
      * update tokenization test
      
      * fix the rotary embedding
      
      * with style
      
      * fix slow tests
      
      * WARNING this commit might be very important for precisions
      
      * Update tests/models/gemma/test_modeling_flax_gemma.py
      
      * Update src/transformers/models/gemma/configuration_gemma.py
      Co-authored-by: default avatarLysandre Debut <hi@lysand.re>
      
      * Update src/transformers/models/gemma/modeling_flax_gemma.py
      Co-authored-by: default avatarLysandre Debut <hi@lysand.re>
      
      * small nits here and there!
      
      * forgotten nit
      
      * remove on the fly computation of inv_freq
      
      * revert previous change, let's be safe and for now re-compute freq cis to make sure it's in float
      
      * Apply suggestions from code review
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update src/transformers/models/gemma/convert_gemma_weights_to_hf.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update src/transformers/models/gemma/convert_gemma_weights_to_hf.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update tests/models/gemma/test_modeling_gemma.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update tests/models/gemma/test_modeling_gemma.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update tests/models/gemma/test_modeling_gemma.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update tests/models/gemma/test_modeling_flax_gemma.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update tests/models/gemma/test_modeling_gemma.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update tests/models/gemma/test_modeling_gemma.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update tests/models/gemma/test_tokenization_gemma.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update tests/models/gemma/test_tokenization_gemma.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update tests/models/gemma/test_tokenization_gemma.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update tests/models/gemma/test_tokenization_gemma.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update tests/models/gemma/test_modeling_gemma.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update tests/models/gemma/test_modeling_gemma.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update tests/models/gemma/test_modeling_gemma.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update tests/models/gemma/test_modeling_gemma.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update tests/models/gemma/test_modeling_gemma.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * nit conversion script link
      
      * fix some tests
      
      * add not doctest and pr doctest
      
      * repo consistency
      
      * fix last CIs 馃殌
      
      
      
      * update all readmes
      
      ---------
      Co-authored-by: default avataryounesbelkada <younesbelkada@gmail.com>
      Co-authored-by: default avatarSanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      Co-authored-by: default avatarYounes Belkada <49240599+younesbelkada@users.noreply.github.com>
      Co-authored-by: default avatarsanchit-gandhi <sanchit@huggingface.co>
      Co-authored-by: default avatarLysandre Debut <hi@lysand.re>
      594c1277
  18. 19 Feb, 2024 1 commit
  19. 16 Feb, 2024 1 commit
  20. 14 Feb, 2024 2 commits
    • NielsRogge's avatar
      Add SiglipForImageClassification and CLIPForImageClassification (#28952) · 63ffd56d
      NielsRogge authored
      * First draft
      
      * Add CLIPForImageClassification
      
      * Remove scripts
      
      * Fix doctests
      63ffd56d
    • Jonathan Tow's avatar
      Add `StableLM` (#28810) · de6029a0
      Jonathan Tow authored
      * Add `StableLM`
      
      * fix(model): re-create from `huggingface-cli add-new-model-like persimmon`
      
      * fix: re-add changes to address comments
      
      * fix(readme): add links to paper
      
      * fix(tokenization_auto): remove `GPTNeoXTokenizerFastFast` ref
      
      * fix(tests): re-add `@slow` decorator to integration tests
      
      * fix(tests): import slow...
      
      * fix(readme_hd): remove whitespace edit
      
      * fix(tokenizer): auto tokenizer tuple
      
      * skip doctests for `modeling_stablelm`
      de6029a0
  21. 12 Feb, 2024 1 commit
  22. 08 Feb, 2024 1 commit
  23. 06 Feb, 2024 1 commit
  24. 02 Feb, 2024 1 commit
    • Klaus Hipp's avatar
      [Docs] Fix spelling and grammar mistakes (#28825) · 721ee783
      Klaus Hipp authored
      * Fix typos and grammar mistakes in docs and examples
      
      * Fix typos in docstrings and comments
      
      * Fix spelling of `tokenizer` in model tests
      
      * Remove erroneous spaces in decorators
      
      * Remove extra spaces in Markdown link texts
      721ee783
  25. 01 Feb, 2024 1 commit
    • JB (Don)'s avatar
      Adding [T5/MT5/UMT5]ForTokenClassification (#28443) · 0d26abdd
      JB (Don) authored
      * Adding [T5/MT5/UMT5]ForTokenClassification
      
      * Add auto mappings for T5ForTokenClassification and variants
      
      * Adding ForTokenClassification to the list of models
      
      * Adding attention_mask param to the T5ForTokenClassification test
      
      * Remove outdated comment in test
      
      * Adding EncoderOnly and Token Classification tests for MT5 and UMT5
      
      * Fix typo in umt5 string
      
      * Add tests for all the existing MT5 models
      
      * Fix wrong comment in dependency_versions_table
      
      * Reverting change to common test for _keys_to_ignore_on_load_missing
      
      The test is correctly picking up redundant keys in _keys_to_ignore_on_load_missing.
      
      * Removing _keys_to_ignore_on_missing from MT5 since the key is not used in the model
      
      * Add fix-copies to MT5ModelTest
      0d26abdd
  26. 31 Jan, 2024 1 commit
    • Kian Sierra McGettigan's avatar
      Flax mistral (#26943) · f7076cd3
      Kian Sierra McGettigan authored
      * direct copy from llama work
      
      * mistral modules forward pass working
      
      * flax mistral forward pass with sliding window
      
      * added tests
      
      * added layer collection approach
      
      * Revert "added layer collection approach"
      
      This reverts commit 0e2905bf2236ec323163fc1a9f0c016b21aa8b8f.
      
      * Revert "Revert "added layer collection approach""
      
      This reverts commit fb17b6187ac5d16da7c461e1130514dc3d137a43.
      
      * fixed attention outputs
      
      * added mistral to init and auto
      
      * fixed import name
      
      * fixed layernorm weight dtype
      
      * freeze initialized weights
      
      * make sure conversion consideres bfloat16
      
      * added backend
      
      * added docstrings
      
      * added cache
      
      * fixed sliding window causal mask
      
      * passes cache tests
      
      * passed all tests
      
      * applied make style
      
      * removed commented out code
      
      * applied fix-copies ignored other model changes
      
      * applied make fix-copies
      
      * removed unused functions
      
      * passed generation integration test
      
      * slow tests pass
      
      * fixed slow tests
      
      * changed default dtype from jax.numpy.float32 to float32 for docstring check
      
      * skip cache test  for FlaxMistralForSequenceClassification since if pad_token_id in input_ids it doesn't score previous input_ids
      
      * updated checkpoint since from_pt not included
      
      * applied black style
      
      * removed unused args
      
      * Applied styling and fixup
      
      * changed checkpoint for doc back
      
      * fixed rf after adding it to hf hub
      
      * Add dummy ckpt
      
      * applied styling
      
      * added tokenizer to new ckpt
      
      * fixed slice format
      
      * fix init and slice
      
      * changed ref for placeholder TODO
      
      * added copies from Llama
      
      * applied styling
      
      * applied fix-copies
      
      * fixed docs
      
      * update weight dtype reconversion for sharded weights
      
      * removed Nullable input ids
      
      * Removed unnecessary output attentions in Module
      
      * added embedding weight initialziation
      
      * removed unused past_key_values
      
      * fixed deterministic
      
      * Fixed RMS Norm and added copied from
      
      * removed input_embeds
      
      * applied make style
      
      * removed nullable input ids from sequence classification model
      
      * added copied from GPTJ
      
      * added copied from Llama on FlaxMistralDecoderLayer
      
      * added copied from to FlaxMistralPreTrainedModel methods
      
      * fix test deprecation warning
      
      * freeze gpt neox random_params and fix copies
      
      * applied make style
      
      * fixed doc issue
      
      * skipped docstring test to allign # copied from
      
      * applied make style
      
      * removed FlaxMistralForSequenceClassification
      
      * removed unused padding_idx
      
      * removed more sequence classification
      
      * removed sequence classification
      
      * applied styling and consistency
      
      * added copied from in tests
      
      * removed sequence classification test logic
      
      * applied styling
      
      * applied make style
      
      * removed freeze and fixed copies
      
      * undo test change
      
      * changed repeat_kv to tile
      
      * fixed to key value groups
      
      * updated copyright year
      
      * split casual_mask
      
      * empty to rerun failed pt_flax_equivalence test FlaxWav2Vec2ModelTest
      
      * went back to 2023 for tests_pr_documentation_tests
      
      * went back to 2024
      
      * changed tile to repeat
      
      * applied make style
      
      * empty for retry on Wav2Vec2
      f7076cd3
  27. 29 Jan, 2024 3 commits
  28. 25 Jan, 2024 1 commit
    • NielsRogge's avatar
      Add Depth Anything (#28654) · 963db81a
      NielsRogge authored
      * First draft
      
      * More improvements
      
      * More improvements
      
      * More improvements
      
      * More improvements
      
      * Add docs
      
      * Remove file
      
      * Add copied from
      
      * Address comments
      
      * Address comments
      
      * Address comments
      
      * Fix style
      
      * Update docs
      
      * Convert all checkpoints, add integration test
      
      * Rename checkpoints
      
      * Add pretrained backbone attributes
      
      * Fix default config
      
      * Address comment
      
      * Add figure to docs
      
      * Fix bug thanks to @xenova
      
      * Update conversion script
      
      * Fix integration test
      963db81a
  29. 22 Jan, 2024 1 commit
  30. 19 Jan, 2024 1 commit
  31. 18 Jan, 2024 1 commit
    • Yoach Lacombe's avatar
      Add new meta w2v2-conformer BERT-like model (#28165) · d2cdefb9
      Yoach Lacombe authored
      
      
      * first commit
      
      * correct default value non causal
      
      * update config and modeling code
      
      * update converting checkpoint
      
      * clean modeling and fix tests
      
      * make style
      
      * add new config parameters to docstring
      
      * fix copied from statements
      
      * Apply suggestions from code review
      Co-authored-by: default avatarSanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
      
      * make position_embeddings_type docstrings clearer
      
      * clean converting script
      
      * remove function not used
      
      * clean modeling file
      
      * apply suggestion for test file + add convert script to not_doctested
      
      * modify tests according to review - cleaner logic and more tests
      
      * Apply nit suggestions from code review
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * add checker of valid position embeddings type
      
      * instantiate new layer norm layer with the right eps
      
      * fix freeze_feature_encoder since it can be None in some cases
      
      * add test same output in convert script
      
      * restore wav2vec2conformer and add new model
      
      * create processor and FE + clean
      
      * add new model code
      
      * fix convert script and set default config parameters
      
      * correct model id paths
      
      * make style
      
      * make fix-copies and cleaning files
      
      * fix copied from statements
      
      * complete .md and fixe copies
      
      * clean convert script argument defaults
      
      * fix config parameters docstrings
      
      * fix config docstring
      
      * add copied from and enrich FE tests
      
      * fix copied from and repo-consistency
      
      * add autotokenizer
      
      * make test input length shorter and change docstring code
      
      * fix docstrings and copied from
      
      * add add_adapter to ASR training example
      
      * make testing of adapters more robust
      
      * adapt to multi adapter layers
      
      * refactor input_values->input_features and remove w2v2-bert feature extractor
      
      * remove pretraining model
      
      * remove depreciated features and useless lines
      
      * add copied from and ignore statements to modeling tests
      
      * remove pretraining model #2
      
      * change import in convert script
      
      * change default in convert script
      
      * update readme and remove useless line
      
      * Update tests/models/wav2vec2_bert/test_processor_wav2vec2_bert.py
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * refactor BERT to Bert for consistency
      
      * remove useless ignore copy statement
      
      * add persistent to buffer in rotary
      
      * add eps in LayerNorm init and remove copied from
      
      * add adapter activation parameters and add copied from statements
      
      * Fix copied statements and add unitest.skip reasons
      
      * add copied statement in test_processor
      
      * refactor processor
      
      * make style
      
      * replace numpy random by torch rand
      
      * remove expected output CTC
      
      * improve converting script with processor class
      
      * Apply suggestions from code review
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * remove gumbel class
      
      * remove tests related to previously deleted class
      
      * Update src/transformers/models/wav2vec2_bert/configuration_wav2vec2_bert.py
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * correct typos
      
      * remove uused parameters
      
      * update processor to takes both text and audio
      
      * update checkpoints
      
      * update expected output and add ctc expected output
      
      * add label_attention_mask
      
      * replace pt with np in processor tests
      
      * fix typo
      
      * revert to behaviour with labels_attention_mask
      
      ---------
      Co-authored-by: default avatarSanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      d2cdefb9
  32. 17 Jan, 2024 2 commits
    • Junyang Lin's avatar
      Add qwen2 (#28436) · d6ffe74d
      Junyang Lin authored
      
      
      * add config, modeling, and tokenization
      
      * add auto and init
      
      * update readme
      
      * update readme
      
      * update team name
      
      * fixup
      
      * fixup
      
      * update config
      
      * update code style
      
      * update for fixup
      
      * update for fixup
      
      * update for fixup
      
      * update for testing
      
      * update for testing
      
      * fix bug for config and tokenization
      
      * fix bug for bos token
      
      * not doctest
      
      * debug tokenizer
      
      * not doctest
      
      * debug tokenization
      
      * debug init for tokenizer
      
      * fix style
      
      * update init
      
      * delete if in token auto
      
      * add tokenizer doc
      
      * add tokenizer in init
      
      * Update dummy_tokenizers_objects.py
      
      * update
      
      * update
      
      * debug
      
      * Update tokenization_qwen2.py
      
      * debug
      
      * Update convert_slow_tokenizer.py
      
      * add copies
      
      * add copied from and make style
      
      * update files map
      
      * update test
      
      * fix style
      
      * fix merge reading and update tests
      
      * fix tests
      
      * fix tests
      
      * fix style
      
      * debug a variable in readme
      
      * Update src/transformers/models/qwen2/configuration_qwen2.py
      Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>
      
      * update test and copied from
      
      * fix style
      
      * update qwen2 tokenization  and tests
      
      * Update tokenization_qwen2.py
      
      * delete the copied from after property
      
      * fix style
      
      * update tests
      
      * update tests
      
      * add copied from
      
      * fix bugs
      
      * update doc
      
      * add warning for sliding window attention
      
      * update qwen2 tokenization
      
      * fix style
      
      * Update src/transformers/models/qwen2/modeling_qwen2.py
      Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>
      
      * fix tokenizer fast
      
      ---------
      Co-authored-by: default avatarRen Xuancheng <jklj077@users.noreply.github.com>
      Co-authored-by: default avatarrenxuancheng.rxc <renxuancheng.rxc@alibaba-inc.com>
      Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>
      d6ffe74d
    • Gustavo de Rosa's avatar
      Fixes default value of `softmax_scale` in `PhiFlashAttention2`. (#28537) · d93ef7d7
      Gustavo de Rosa authored
      * fix(phi): Phi does not use softmax_scale in Flash-Attention.
      
      * chore(docs): Update Phi docs.
      d93ef7d7