1. 18 Oct, 2020 1 commit
    • Thomas Wolf's avatar
      [Dependencies|tokenizers] Make both SentencePiece and Tokenizers optional dependencies (#7659) · ba8c4d0a
      Thomas Wolf authored
      * splitting fast and slow tokenizers [WIP]
      
      * [WIP] splitting sentencepiece and tokenizers dependencies
      
      * update dummy objects
      
      * add name_or_path to models and tokenizers
      
      * prefix added to file names
      
      * prefix
      
      * styling + quality
      
      * spliting all the tokenizer files - sorting sentencepiece based ones
      
      * update tokenizer version up to 0.9.0
      
      * remove hard dependency on sentencepiece 🎉
      
      * and removed hard dependency on tokenizers 🎉
      
      
      
      * update conversion script
      
      * update missing models
      
      * fixing tests
      
      * move test_tokenization_fast to main tokenization tests - fix bugs
      
      * bump up tokenizers
      
      * fix bert_generation
      
      * update ad fix several tokenizers
      
      * keep sentencepiece in deps for now
      
      * fix funnel and deberta tests
      
      * fix fsmt
      
      * fix marian tests
      
      * fix layoutlm
      
      * fix squeezebert and gpt2
      
      * fix T5 tokenization
      
      * fix xlnet tests
      
      * style
      
      * fix mbart
      
      * bump up tokenizers to 0.9.2
      
      * fix model tests
      
      * fix tf models
      
      * fix seq2seq examples
      
      * fix tests without sentencepiece
      
      * fix slow => fast  conversion without sentencepiece
      
      * update auto and bert generation tests
      
      * fix mbart tests
      
      * fix auto and common test without tokenizers
      
      * fix tests without tokenizers
      
      * clean up tests lighten up when tokenizers + sentencepiece are both off
      
      * style quality and tests fixing
      
      * add sentencepiece to doc/examples reqs
      
      * leave sentencepiece on for now
      
      * style quality split hebert and fix pegasus
      
      * WIP Herbert fast
      
      * add sample_text_no_unicode and fix hebert tokenization
      
      * skip FSMT example test for now
      
      * fix style
      
      * fix fsmt in example tests
      
      * update following Lysandre and Sylvain's comments
      
      * Update src/transformers/testing_utils.py
      Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>
      
      * Update src/transformers/testing_utils.py
      Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>
      
      * Update src/transformers/tokenization_utils_base.py
      Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>
      
      * Update src/transformers/tokenization_utils_base.py
      Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>
      Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>
      ba8c4d0a
  2. 26 Aug, 2020 1 commit
  3. 24 Aug, 2020 1 commit
  4. 13 Aug, 2020 1 commit
    • Stas Bekman's avatar
      cleanup tf unittests: part 2 (#6260) · e983da0e
      Stas Bekman authored
      * cleanup torch unittests: part 2
      
      * remove trailing comma added by isort, and which breaks flake
      
      * one more comma
      
      * revert odd balls
      
      * part 3: odd cases
      
      * more ["key"] -> .key refactoring
      
      * .numpy() is not needed
      
      * more unncessary .numpy() removed
      
      * more simplification
      e983da0e
  5. 05 Aug, 2020 1 commit
    • Sylvain Gugger's avatar
      Tf model outputs (#6247) · c67d1a02
      Sylvain Gugger authored
      * TF outputs and test on BERT
      
      * Albert to DistilBert
      
      * All remaining TF models except T5
      
      * Documentation
      
      * One file forgotten
      
      * TF outputs and test on BERT
      
      * Albert to DistilBert
      
      * All remaining TF models except T5
      
      * Documentation
      
      * One file forgotten
      
      * Add new models and fix issues
      
      * Quality improvements
      
      * Add T5
      
      * A bit of cleanup
      
      * Fix for slow tests
      
      * Style
      c67d1a02
  6. 29 Jul, 2020 1 commit
  7. 01 Jul, 2020 1 commit
  8. 04 Jun, 2020 1 commit
    • Julien Plu's avatar
      Tensorflow improvements (#4530) · f9414f75
      Julien Plu authored
      
      
      * Better None gradients handling
      
      * Apply Style
      
      * Apply Style
      
      * Create a loss class per task to compute its respective loss
      
      * Add loss classes to the ALBERT TF models
      
      * Add loss classes to the BERT TF models
      
      * Add question answering and multiple choice to TF Camembert
      
      * Remove prints
      
      * Add multiple choice model to TF DistilBERT + loss computation
      
      * Add question answering model to TF Electra + loss computation
      
      * Add token classification, question answering and multiple choice models to TF Flaubert
      
      * Add multiple choice model to TF Roberta + loss computation
      
      * Add multiple choice model to TF XLM + loss computation
      
      * Add multiple choice and question answering models to TF XLM-Roberta
      
      * Add multiple choice model to TF XLNet + loss computation
      
      * Remove unused parameters
      
      * Add task loss classes
      
      * Reorder TF imports + add new model classes
      
      * Add new model classes
      
      * Bugfix in TF T5 model
      
      * Bugfix for TF T5 tests
      
      * Bugfix in TF T5 model
      
      * Fix TF T5 model tests
      
      * Fix T5 tests + some renaming
      
      * Fix inheritance issue in the AutoX tests
      
      * Add tests for TF Flaubert and TF XLM Roberta
      
      * Add tests for TF Flaubert and TF XLM Roberta
      
      * Remove unused piece of code in the TF trainer
      
      * bugfix and remove unused code
      
      * Bugfix for TF 2.2
      
      * Apply Style
      
      * Divide TFSequenceClassificationAndMultipleChoiceLoss into their two respective name
      
      * Apply style
      
      * Mirror the PT Trainer in the TF one: fp16, optimizers and tb_writer as class parameter and better dataset handling
      
      * Fix TF optimizations tests and apply style
      
      * Remove useless parameter
      
      * Bugfix and apply style
      
      * Fix TF Trainer prediction
      
      * Now the TF models return the loss such as their PyTorch couterparts
      
      * Apply Style
      
      * Ignore some tests output
      
      * Take into account the SQuAD cls_index, p_mask and is_impossible parameters for the QuestionAnswering task models.
      
      * Fix names for SQuAD data
      
      * Apply Style
      
      * Fix conflicts with 2.11 release
      
      * Fix conflicts with 2.11
      
      * Fix wrongname
      
      * Add better documentation on the new create_optimizer function
      
      * Fix isort
      
      * logging_dir: use same default as PyTorch
      Co-authored-by: default avatarJulien Chaumond <chaumond@gmail.com>
      f9414f75
  9. 24 Mar, 2020 1 commit