- 22 Nov, 2022 3 commits
-
-
Michael Nation authored
* Optimizes DonutProcessor token2json method for speed * Applies black formatting * Updates Donut pretrained model name in test file * remaining pytorch type hints (#20217) * Update modeling_flava.py * Update modeling_markuplm.py * Update modeling_glpn.py * Update modeling_roc_bert.py * Update modeling_segformer.py * Update modeling_tapas.py * Update modeling_tapas.py * Update modeling_tapas.py * Update modeling_tapas.py * Update modeling_trocr.py * Update modeling_videomae.py * Update modeling_videomae.py * Update modeling_videomae.py * Update modeling_yolos.py * Update modeling_wav2vec2.py * Update modeling_jukebox.py * Update modeling_jukebox.py * Update modeling_jukebox.py * Update modeling_jukebox.py * Data collator for token classification pads labels column when receives pytorch tensors (#20244) * token cls data_collator pads labels column * remove walrus operator for code quality * remove redundat space * remove comment that was fixed * PR comments fix Co-authored-by:
Alexander Markov <amarkov.me@gmail.com> * [Doctest] Add configuration_deformable_detr.py (#20273) * Update configuration_deformable_detr.py comment * Add DeformableDetrConfig to documentation_tests.txt * Fix summarization script (#20286) * [DOCTEST] Fix the documentation of RoCBert (#20142) * update part of the doc * add temp values, fix part of the doc * add template outputs * add correct models and outputss * style * fixup * [bnb] Let's warn users when saving 8-bit models (#20282) * add warning on 8-bit models - added tests - added wrapper * move to a private attribute - remove wrapper - changed `save_pretrained` method * Apply suggestions from code review Co-authored-by:
Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * fix suggestions Co-authored-by:
Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * Adding `zero-shot-object-detection` pipeline doctest. (#20274) * Adding `zero-shot-object-detection` pipeline doctest. * Remove nested_simplify. * Adding doctest for `object-detection` pipeline. (#20258) * Adding doctest for `object-detection` pipeline. * Removed nested_simplify. * Image transforms functionality used instead (#20278) * Image transforms functionality used instead * Import torch * Import rather than copy * Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py * TF: add test for `PushToHubCallback` (#20231) * test hub tf callback * create repo before cloning it * Generate: general TF XLA constrastive search are now slow tests (#20277) * move contrastive search test to slow * Fixing the doctests failures. (#20294) * Fixing the doctests failures. * Fixup. * set the default cache_enable to True, aligned with the default value in pytorch cpu/cuda amp autocast (#20289) Signed-off-by:
Wang, Yi A <yi.a.wang@intel.com> Signed-off-by:
Wang, Yi A <yi.a.wang@intel.com> * Add docstrings for canine model (#19457) * Add docstrings for canine model * Update CanineForTokenClassification Co-authored-by:
ydshieh <ydshieh@users.noreply.github.com> * Add AutoBackbone + ResNetBackbone (#20229) * Add ResNetBackbone * Define channels and strides as property * Remove file * Add test for backbone * Update BackboneOutput class * Remove strides property * Fix docstring * Add backbones to SHOULD_HAVE_THEIR_OWN_PAGE * Fix auto mapping name * Add sanity check for out_features * Set stage names based on depths * Update to tuple Co-authored-by:
Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local> * Add missing report button for Example test (#20293) Co-authored-by:
ydshieh <ydshieh@users.noreply.github.com> * refactor test (#20300) - simplifies the devce checking test * [Tiny model creation] deal with `ImageProcessor` (#20298) Co-authored-by:
ydshieh <ydshieh@users.noreply.github.com> * Fix blender bot missleading doc (#20301) * fix the doc to specify that add_prefix_space = False * add correct expected output * remove two tokens that should not be suppressed (#20302) * [ASR Examples] Update README for Whisper (#20230) * [ASR Examples] Update README for seq2seq * add language info * add training results * re-word * Add padding image transformation (#19838) * Add padding transformation * Add in upstream changes * Update tests & docs * Code formatting tuples in docstring * Pin TensorFlow (#20313) * Pin to the right version... * Also pin TensorFlow CPU * Add AnyPrecisionAdamW optimizer (#18961) * Add AnyPrecisionAdamW optimizer * Add optim_args argument to TrainingArgs * Add tests for AnyPrecisionOptimizer * Change AnyPrecisionAdam default params to float32 * Move default_anyprecision_kwargs in trainer test * Rename AnyPrecisionAdamW * [Proposal] Breaking change `zero-shot-object-detection` for improved consistency. (#20280) * [Proposal] Breaking change `zero-shot-object-detection` for improved consistency. This is a proposal to modify the output of `zero-shot-object-detection` to provide better alignment with other pipelines. The output is now strictly the same as `object-detection` whereas before it would output lists of lists. The name `candidate_labels` is used throughout for consistency with other `zero-shot` pipelines. The pipeline is changed to `ChunkPipeline` to support batching cleanly. This removes all the lists and list of lists shenanigans, it's now a matter of the base pipeline handling all this not this specific one. **Breaking change**: It did remove complex calls potentials `pipe(images = [image1, image2], text_queries=[candidates1, candidates2])` to support only `pipe([{"image": image1, "candidate_labels": candidates1}, {"image": image2, "candidate_labels": candidates2}])` when dealing with lists and/or datasets. We could keep them, but it will add a lot of complexity to the code base, since the pipeline is rather young, I'd rather break to keep the code simpler, but we can revert this. **Breaking change**: The name of the argument is now `image` instead of `images` since it expects by default only 1 image. This is revertable like the previous one. **Breaking change**: The types is now simplified and flattened: `pipe(inputs) == [{**object1}, {**object2}]` instead of the previous `pipe(inputs) == [[{**object1}, {**object1}], [{**object2}]]` Where the different instances would be grouped by candidate labels within lists. IMHO this is not really desirable, since it would output empty lists and is only adding superflous indirection compared to `zero-shot-object-detection`. It is relatively change free in terms of how the results, it does change computation however since now the batching is handled by the pipeline itself. It **did** change the results for the small models so there seems to be a real difference in how the models handle this. * Fixing the doctests. * Behind is_torch_available. * Fix flakey test with seed (#20318) * Pin TF 2.10.1 for Push CI (#20319) Co-authored-by:
ydshieh <ydshieh@users.noreply.github.com> * Remove double brackets (#20307) * remove double brackets * oops get other bracket * TF: future proof our keras imports (#20317) * future proof our tf code * parse tf versions * Add Neighborhood Attention Transformer (NAT) and Dilated NAT (DiNAT) models (#20219) * Add DiNAT * Adds DiNAT + tests * Minor fixes * Added HF model * Add natten to dependencies. * Cleanup * Minor fixup * Reformat * Optional NATTEN import. * Reformat & add doc to _toctree * Reformat (finally) * Dummy objects for DiNAT * Add NAT + minor changes Adds NAT as its own independent model + docs, tests Adds NATTEN to ext deps to ensure ci picks it up. * Remove natten from `all` and `dev-torch` deps, add manual pip install to ci tests * Minor fixes. * Fix READMEs. * Requested changes to docs + minor fixes. * Requested changes. * Add NAT/DiNAT tests to layoutlm_job * Correction to Dinat doc. * Requested changes. * organize pipelines by modality (#20306) * Fix torch device issues (#20304) * fix device issue Co-authored-by:
ydshieh <ydshieh@users.noreply.github.com> * Generate: add generation config class (#20218) Co-authored-by:
Sylvain Gugger <35901082+sgugger@users.noreply.github.com> Co-authored-by:
Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * translate zh quicktour(#20095) (#20181) * zh quicktour(#20095) * add zh to doc workflow * remove untranslation from toctree Co-authored-by:
BeifangSusu <BeifangSusu@bfss.com> * Add Spanish translation of serialization.mdx (#20245) * Update _toctree and clone original content * Translate first three sections * Add more translated chapters. Only 3 more left. * Finish translation * Run style from doc-builder * Address recommended changes from reviewer * Add LayerScale to NAT/DiNAT (#20325) * Add LayerScale to NAT/DiNAT. Completely dropped the ball on LayerScale in the original PR (#20219). This is just an optional argument in both models, and is only activated for larger variants in order to provide training stability. * Add LayerScale to NAT/DiNAT. Minor error fixed. Co-authored-by:
Ali Hassani <ahassanijr@gmail.com> * [Switch Transformers] Fix failing slow test (#20346) * run slow test on GPU * remove unnecessary device assignment * use `torch_device` instead * fix: "BigSicence" typo in docs (#20331) * add MobileNetV1 model (#17799) * add model files etc for MobileNetV2 rename files for MobileNetV1 initial implementation of MobileNetV1 fix conversion script cleanup write docs tweaks fix conversion script extract hidden states fix test cases make fixup fixup it all remove main from doc link fixes fix tests fix up use google org fix weird assert * fixup * use google organization for checkpoints * Generate: `model_kwargs` can also be an input to `prepare_inputs_for_generation` (#20353) * Update Special Language Tokens for PLBART (#19980) * Update Special Language Tokens for PLBART * fix format * making mapping for language codes and updating tests: * fix format * fix consistency * add assert to both tokenizer tests. * fix format * Update src/transformers/models/plbart/tokenization_plbart.py Co-authored-by:
Arthur <48595927+ArthurZucker@users.noreply.github.com> * improvin readability, setting self.tgt_lang * fixing * readability Co-authored-by:
jordiclive <jordiclive19@imperial.ac.uk> Co-authored-by:
Arthur <48595927+ArthurZucker@users.noreply.github.com> * Add resources (#20296) Co-authored-by:
Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local> * Enhance HfArgumentParser functionality and ease of use (#20323) * Enhance HfArgumentParser * Fix type hints for older python versions * Fix and add tests (+formatting) * Add changes * doc-builder formatting * Remove unused import "Call" * Add Audio Spectogram Transformer (#19981) * First draft * Make conversion script work * Add id2label mapping, run code quality * Fix copies * Add first draft of feature extractor * Update conversion script to use feature extractor * Make more tests pass * Add docs * update input_features to input_values + pad by default to max length * Fix doc tests * Add feature extractor tests * Add proper padding/truncation to feature extractor * Add support for conversion of all audioset checkpoints * Improve docs and extend conversion script * Fix README * Rename spectogram to spectrogram * Fix copies * Add integration test * Remove dummy conv * Update to ast * Update organization * Fix init * Rename model to AST * Add require_torchaudio annotator * Move import of ASTFeatureExtractor under a is_speech_available * Fix rebase * Add pipeline config * Update name of classifier head * Rename time_dimension and frequency_dimension for clarity * Remove print statement * Fix pipeline test * Fix pipeline test * Fix index table * Fix init * Fix conversion script * Rename to ForAudioClassification * Fix index table Co-authored-by:
Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local> * Add inference section to task guides (#18781) *
📝 start adding inference section to task guides *✨ make style *📝 add multiple choice * add rest of inference sections * make style * add compute_metric, push_to_hub, pipeline * make style * add updated sequence and token classification * make style * make edits in token classification * add audio classification * make style * add asr * make style * add image classification * make style * add summarization * make style * add translation * make style * add multiple choice * add language modeling * add qa * make style * review and edits * apply reviews * make style * fix call to processor * apply audio reviews * update to better asr model * make style * Fix toctree for Section 3 in Spanish Documentation (#20360) * Order and group topics in the right section * Translate "Computer Vision" Signed-off-by:Wang, Yi A <yi.a.wang@intel.com> Co-authored-by:
IMvision12 <88665786+IMvision12@users.noreply.github.com> Co-authored-by:
Alexander Markov <almarkv@yandex.ru> Co-authored-by:
Alexander Markov <amarkov.me@gmail.com> Co-authored-by:
Saad Mahmud <shuvro.mahmud79@gmail.com> Co-authored-by:
Zachary Mueller <muellerzr@gmail.com> Co-authored-by:
Arthur <48595927+ArthurZucker@users.noreply.github.com> Co-authored-by:
Younes Belkada <49240599+younesbelkada@users.noreply.github.com> Co-authored-by:
Sylvain Gugger <35901082+sgugger@users.noreply.github.com> Co-authored-by:
Nicolas Patry <patry.nicolas@protonmail.com> Co-authored-by:
amyeroberts <22614925+amyeroberts@users.noreply.github.com> Co-authored-by:
Joao Gante <joaofranciscocardosogante@gmail.com> Co-authored-by:
Wang, Yi <yi.a.wang@intel.com> Co-authored-by:
raghavanone <115454562+raghavanone@users.noreply.github.com> Co-authored-by:
ydshieh <ydshieh@users.noreply.github.com> Co-authored-by:
NielsRogge <48327001+NielsRogge@users.noreply.github.com> Co-authored-by:
Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local> Co-authored-by:
Yih-Dar <2521628+ydshieh@users.noreply.github.com> Co-authored-by:
Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com> Co-authored-by:
Sylvain Gugger <Sylvain.gugger@gmail.com> Co-authored-by:
atturaioe <76523524+atturaioe@users.noreply.github.com> Co-authored-by:
Steven Liu <59462357+stevhliu@users.noreply.github.com> Co-authored-by:
Ali Hassani <68103095+alihassanijr@users.noreply.github.com> Co-authored-by:
BFSS <31245245+bfss@users.noreply.github.com> Co-authored-by:
BeifangSusu <BeifangSusu@bfss.com> Co-authored-by:
Ian C <7807897+donelianc@users.noreply.github.com> Co-authored-by:
Ali Hassani <ahassanijr@gmail.com> Co-authored-by:
Raj Rajhans <me@rajrajhans.com> Co-authored-by:
Matthijs Hollemans <mail@hollance.com> Co-authored-by:
Jordan Clive <jordan.clive19@imperial.ac.uk> Co-authored-by:
jordiclive <jordiclive19@imperial.ac.uk> Co-authored-by:
Konstantin Dobler <konstantin.j.dobler@gmail.com>
-
Sylvain Gugger authored
-
Joao Gante authored
-
- 21 Nov, 2022 8 commits
-
-
NielsRogge authored
* First draft * Make conversion script work * Add id2label mapping, run code quality * Fix copies * Add first draft of feature extractor * Update conversion script to use feature extractor * Make more tests pass * Add docs * update input_features to input_values + pad by default to max length * Fix doc tests * Add feature extractor tests * Add proper padding/truncation to feature extractor * Add support for conversion of all audioset checkpoints * Improve docs and extend conversion script * Fix README * Rename spectogram to spectrogram * Fix copies * Add integration test * Remove dummy conv * Update to ast * Update organization * Fix init * Rename model to AST * Add require_torchaudio annotator * Move import of ASTFeatureExtractor under a is_speech_available * Fix rebase * Add pipeline config * Update name of classifier head * Rename time_dimension and frequency_dimension for clarity * Remove print statement * Fix pipeline test * Fix pipeline test * Fix index table * Fix init * Fix conversion script * Rename to ForAudioClassification * Fix index table Co-authored-by:Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
-
Konstantin Dobler authored
* Enhance HfArgumentParser * Fix type hints for older python versions * Fix and add tests (+formatting) * Add changes * doc-builder formatting * Remove unused import "Call"
-
Jordan Clive authored
* Update Special Language Tokens for PLBART * fix format * making mapping for language codes and updating tests: * fix format * fix consistency * add assert to both tokenizer tests. * fix format * Update src/transformers/models/plbart/tokenization_plbart.py Co-authored-by:
Arthur <48595927+ArthurZucker@users.noreply.github.com> * improvin readability, setting self.tgt_lang * fixing * readability Co-authored-by:
jordiclive <jordiclive19@imperial.ac.uk> Co-authored-by:
Arthur <48595927+ArthurZucker@users.noreply.github.com>
-
Joao Gante authored
-
Matthijs Hollemans authored
* add model files etc for MobileNetV2 rename files for MobileNetV1 initial implementation of MobileNetV1 fix conversion script cleanup write docs tweaks fix conversion script extract hidden states fix test cases make fixup fixup it all remove main from doc link fixes fix tests fix up use google org fix weird assert * fixup * use google organization for checkpoints
-
Younes Belkada authored
* run slow test on GPU * remove unnecessary device assignment * use `torch_device` instead
-
Joao Gante authored
Co-authored-by:
Sylvain Gugger <35901082+sgugger@users.noreply.github.com> Co-authored-by:
Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
-
Yih-Dar authored
* fix device issue Co-authored-by:ydshieh <ydshieh@users.noreply.github.com>
-
- 18 Nov, 2022 4 commits
-
-
Ali Hassani authored
* Add DiNAT * Adds DiNAT + tests * Minor fixes * Added HF model * Add natten to dependencies. * Cleanup * Minor fixup * Reformat * Optional NATTEN import. * Reformat & add doc to _toctree * Reformat (finally) * Dummy objects for DiNAT * Add NAT + minor changes Adds NAT as its own independent model + docs, tests Adds NATTEN to ext deps to ensure ci picks it up. * Remove natten from `all` and `dev-torch` deps, add manual pip install to ci tests * Minor fixes. * Fix READMEs. * Requested changes to docs + minor fixes. * Requested changes. * Add NAT/DiNAT tests to layoutlm_job * Correction to Dinat doc. * Requested changes.
-
Nicolas Patry authored
* [Proposal] Breaking change `zero-shot-object-detection` for improved consistency. This is a proposal to modify the output of `zero-shot-object-detection` to provide better alignment with other pipelines. The output is now strictly the same as `object-detection` whereas before it would output lists of lists. The name `candidate_labels` is used throughout for consistency with other `zero-shot` pipelines. The pipeline is changed to `ChunkPipeline` to support batching cleanly. This removes all the lists and list of lists shenanigans, it's now a matter of the base pipeline handling all this not this specific one. **Breaking change**: It did remove complex calls potentials `pipe(images = [image1, image2], text_queries=[candidates1, candidates2])` to support only `pipe([{"image": image1, "candidate_labels": candidates1}, {"image": image2, "candidate_labels": candidates2}])` when dealing with lists and/or datasets. We could keep them, but it will add a lot of complexity to the code base, since the pipeline is rather young, I'd rather break to keep the code simpler, but we can revert this. **Breaking change**: The name of the argument is now `image` instead of `images` since it expects by default only 1 image. This is revertable like the previous one. **Breaking change**: The types is now simplified and flattened: `pipe(inputs) == [{**object1}, {**object2}]` instead of the previous `pipe(inputs) == [[{**object1}, {**object1}], [{**object2}]]` Where the different instances would be grouped by candidate labels within lists. IMHO this is not really desirable, since it would output empty lists and is only adding superflous indirection compared to `zero-shot-object-detection`. It is relatively change free in terms of how the results, it does change computation however since now the batching is handled by the pipeline itself. It **did** change the results for the small models so there seems to be a real difference in how the models handle this. * Fixing the doctests. * Behind is_torch_available. -
atturaioe authored
* Add AnyPrecisionAdamW optimizer * Add optim_args argument to TrainingArgs * Add tests for AnyPrecisionOptimizer * Change AnyPrecisionAdam default params to float32 * Move default_anyprecision_kwargs in trainer test * Rename AnyPrecisionAdamW
-
amyeroberts authored
* Add padding transformation * Add in upstream changes * Update tests & docs * Code formatting tuples in docstring
-
- 17 Nov, 2022 5 commits
-
-
Younes Belkada authored
- simplifies the devce checking test
-
NielsRogge authored
* Add ResNetBackbone * Define channels and strides as property * Remove file * Add test for backbone * Update BackboneOutput class * Remove strides property * Fix docstring * Add backbones to SHOULD_HAVE_THEIR_OWN_PAGE * Fix auto mapping name * Add sanity check for out_features * Set stage names based on depths * Update to tuple Co-authored-by:Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
-
Joao Gante authored
* move contrastive search test to slow
-
Joao Gante authored
* test hub tf callback * create repo before cloning it
-
Younes Belkada authored
* add warning on 8-bit models - added tests - added wrapper * move to a private attribute - remove wrapper - changed `save_pretrained` method * Apply suggestions from code review Co-authored-by:
Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * fix suggestions Co-authored-by:
Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
-
- 16 Nov, 2022 2 commits
-
-
Alexander Markov authored
* token cls data_collator pads labels column * remove walrus operator for code quality * remove redundat space * remove comment that was fixed * PR comments fix Co-authored-by:Alexander Markov <amarkov.me@gmail.com>
-
Alara Dirik authored
Adds image-guided object detection method to OwlViTForObjectDetection class as described in the original paper. One-shot/ image-guided object detection enables users to use a query image to search for similar objects in the input image. Co-Authored-By: Dhruv Karan k4r4n.dhruv@gmail.com
-
- 15 Nov, 2022 10 commits
-
-
Matt authored
* Slightly alter Keras dummy loss * Slightly alter Keras dummy loss * Add sample weight to test_keras_fit * Fix test_keras_fit for datasets * Skip the sample_weight stuff for models where the model tester has no batch_size
-
Suraj Patil authored
* allow loading projection in text and vision model * begin tests * finish test for CLIPTextModelTest * style * add slow tests * add new classes for projection heads * remove with_projection * add in init * add in doc * fix tests * fix some more tests * fix copies * fix docs * remove leftover from fix-copies * add the head models in IGNORE_NON_AUTO_CONFIGURED * fix docstr * fix tests * Apply suggestions from code review Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * add docstr for models Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com>
-
Sylvain Gugger authored
* Try PT1.13 by removing torch scatter * Skip failing tests * Style * Remvoe testing extras for repo utils * Try with all decorators * Try to wipe the cache * Fix all tests? * Try this way * Fix comma * Update to main * Try with less deps * Quality
-
NielsRogge authored
* Fix bug * Add another fix * Add print statement * Apply fix * Fix feature extractor * Fix feature extractor * Add print statements * Add print statements * Remove print statements * Add instance segmentation integration test * Add integration test for semantic segmentation * Add draft for panoptic segmentation integration test * Fix integration test for panoptic segmentation * Remove slow annotator Co-authored-by:Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
-
amyeroberts authored
* Add transforms for object detection * Update src/transformers/image_transforms.py Co-authored-by:
Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * Better var names & docstring * Remove unused var desc in docstring * Update src/transformers/image_transforms.py Co-authored-by:
Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
-
Younes Belkada authored
* first commit * add more comments * add router v1 * clean up - remove `tf` modeling files * clean up - remove `tf` modeling files * clean up * v0 routers * added more router - Implemented `ExpertsChooseMaskedRouter` - added tests - 2 more routers to implement * last router * improved docstring - completed the docstring in `router.py` - added more args in the config * v0 sparse mlp * replace wrong naming * forward pass run * update MOE layer * small router update * fixup * consistency * remove scatter router * remove abstract layer * update test and model for integration testing * v1 conversion * update * hardcode hack * all keys match * add gin conversion, without additional libraries * update conversion sctipy * delete router file * update tests wrt router deletion * fix router issues * update expert code * update, logits match, code needsREFACTORING * Refactor code Co-authored-by:
Younes Belkada <younesbelkada@users.noreply.github.com> * add generate tests Co-authored-by:
younesbelkada <younesbelkada@gmail.com> * add support for router loss Co-authored-by:
Younes Belkada <younesbelkada@users.noreply.github.com> * fix forward error * refactor a bit * remove `FlaxSwitchTransformers` modules * more tests pass * Update code Co-authored-by:
Younes Belkada <younesbelkada@users.noreply.github.com> * fixup * fix tests * fix doc * fix doc + tokenization * fix tokenizer test * fix test * fix loss output * update code for backward pass * add loss support * update documentation * fix documentation, clean tokenizer * more doc fix, cleanup example_switch * fix failing test * fix test * fix test * fix loss issue * move layer * update doc and fix router capacity usage * fixup * add sparse mlp index for documentation on hub * fixup * test sparse mix architecture * Apply suggestions from code review * Update docs/source/en/model_doc/switch_transformers.mdx * fixup on update * fix tests * fix another test * attempt fix * Update src/transformers/models/switch_transformers/configuration_switch_transformers.py Co-authored-by:
Arthur <48595927+ArthurZucker@users.noreply.github.com> * Update src/transformers/models/switch_transformers/convert_switch_transformers_original_flax_checkpoint_to_pytorch.py Co-authored-by:
Arthur <48595927+ArthurZucker@users.noreply.github.com> * try * all tests pass * fix jitter noise * Apply suggestions from code review * doc tests pass * Update src/transformers/models/switch_transformers/modeling_switch_transformers.py Co-authored-by:
Arthur <48595927+ArthurZucker@users.noreply.github.com> * Update src/transformers/models/switch_transformers/modeling_switch_transformers.py Co-authored-by:
Arthur <48595927+ArthurZucker@users.noreply.github.com> * remove assert * change config order * fix readme japanese * Apply suggestions from code review Co-authored-by:
Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * remove parallelizable tests + add one liners * remove ONNX config * fix nits - add `T5Tokenizer` in auto mapping - remove `Switch Transformers` from ONNX supported models * remove `_get_router` * remove asserts * add check in test for `router_dtype` * add `SwitchTransformersConfig` in `run_pipeline_test` * Update tests/pipelines/test_pipelines_summarization.py * add huge model conversion script * fix slow tests - add better casting for `Linear8bitLt` - remove `torchscript` tests * add make dir * style on new script * fix nits - doctest - remove `_keys_to_ignore_on_load_unexpected` * Update src/transformers/models/switch_transformers/configuration_switch_transformers.py * add google as authors * fix year * remove last `assert` statements * standardize vertical spaces * fix failing import * fix another failing test * Remove strange àuthorized_keys` * removing todo and padding that is never used Co-authored-by:
Arthur Zucker <arthur.zucker@gmail.com> Co-authored-by:
ybelkada <younes@huggingface.co> Co-authored-by:
Younes Belkada <younesbelkada@users.noreply.github.com> Co-authored-by:
Arthur <48595927+ArthurZucker@users.noreply.github.com> Co-authored-by:
Sylvain Gugger <35901082+sgugger@users.noreply.github.com> Co-authored-by:
Arthur Zucker <arthur@huggingface.co>
-
Younes Belkada authored
* add `accelerate` support for `ViT` family - add `_no_split_modules` - manually cast to the right `dtype`: to change * enable `float16` for `deit` * fix `make fixup` * add `slow` test for `fp16` inference * another safety check * Update src/transformers/models/deit/modeling_deit.py
-
Arthur authored
* Update modeling tests * update tokenization test * typo * nit * fix expected attention outputs * Apply suggestions from code review Co-authored-by:
Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com> * Update tests from review Co-authored-by:
Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com> Co-authored-by:
ydshieh <ydshieh@users.noreply.github.com> * remove problematics kwargs passed to the padding function Co-authored-by:
Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com> Co-authored-by:
ydshieh <ydshieh@users.noreply.github.com>
-
Arthur authored
* update relative positional embedding * make fix copies * add `use_cache` to list of arguments * fixup * 1line fucntion * add `test_decoder_model_past_with_large_inputs_relative_pos_emb` * add relative pos embedding test for more models * style
-
Yih-Dar authored
* Fix ImageSegmentationPipelineTests * Use 0.9 * no zip * links to show images * links to show images * rebase Co-authored-by:ydshieh <ydshieh@users.noreply.github.com>
-
- 14 Nov, 2022 6 commits
-
-
Nicolas Patry authored
* Very crude matching algorithm. * Fixing tests. * Removing comments * Adding warning + fix short matches. * Cleanup tests. * Quality. * Less noisy. * Fixup.
-
Joao Gante authored
-
Yih-Dar authored
Co-authored-by:ydshieh <ydshieh@users.noreply.github.com>
-
Younes Belkada authored
* fix slow test * Update tests/models/roc_bert/test_modeling_roc_bert.py
-
Bartosz Szmelczynski authored
* First draft * Remove scatter dependency * Add require_torch * update vectorized sum test, add clone call * remove artifacts * fix style * fix style v2 * remove "scatter" mentions from the code base * fix isort error Co-authored-by:
Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local> Co-authored-by:
ydshieh <ydshieh@users.noreply.github.com>
-
Matthijs Hollemans authored
* add model files etc for MobileNetV2 * rename files for MobileNetV1 * initial implementation of MobileNetV1 * fix conversion script * cleanup * write docs * tweaks * fix conversion script * extract hidden states * fix test cases * make fixup * fixup it all * rename V1 to V2 * fix checkpoints * fixup * implement first block + weight conversion * add remaining layers * add output stride and dilation * fixup * add tests * add deeplabv3+ head * a bit of fixup * finish deeplab conversion * add link to doc * fix issue with JIT trace in_height and in_width would be Tensor objects during JIT trace, which caused Core ML conversion to fail on the remainder op. By making them ints, the result of the padding calculation becomes a constant value. * cleanup * fix order of models * fix rebase error * remove main from doc link * add image processor * remove old feature extractor * fix converter + other issues * fixup * fix unit test * add to onnx tests (but these appear broken now) * add post_process_semantic_segmentation * use google org * remove unused imports * move args * replace weird assert
-
- 11 Nov, 2022 2 commits
-
-
amyeroberts authored
-
NielsRogge authored
* Apply fix * Fix test * Remove another argument which is not used * Fix pipeline test * Add argument back, add deprecation warning * Add warning add other location * Use warnings instead * Add num_channels to config Co-authored-by:Niels Rogge <nielsrogge@Nielss-MBP.localdomain>
-