- 01 Dec, 2021 2 commits
-
-
Suraj Patil authored
* add flax gptj * no bias in attention dense * no wpe * fix rotary embeddings * fix rotary embeds * fix rotray embeds * quality * doc and quality * fix equivalence tests
-
Jamie DeAntonis authored
* started bf16 integration * minor changes * code now runs * style * lay foundation for bf16 testing * lay foundation for bf16 testing * start the tests * better bf16 check * style * 2 separate checkers - one for bf16 support, another for bf16+autocast * Update src/transformers/training_args.py Co-authored-by:
Stas Bekman <stas00@users.noreply.github.com> * a couple of comment resolutions * more comment resolutions * resolved a small bug * just some print statemtns * added todo marking * added a todo * adjust for API change s/fast_dtype/dtype/ * fix style * merge 2 bf16 util functions * bf16 now does scaling too * Add support for bfloat16 * Revert T5 layernorm to float32 This is based on the comment at https://github.com/huggingface/transformers/pull/14448/files#r752660929 and the PyTorch PR https://github.com/pytorch/pytorch/pull/66920 . * Add comment about conversion to float32 before returning the numpy data * Add comment about AMP-bfloat16 incompatibility * Fix formatting * typo * reformer / bf16 * cleanup * require at least pt-1.10 * fix * will deal with deepspeed separately * cleanup * revert * cleanup * fp16_full_eval and bf16_full_eval are separate modes * proper deprecation * cleanup * test and fixes * spelling * cleanup * add a note that this API is experimental Co-authored-by:
jamie <jamie@cortx.com> Co-authored-by:
Stas Bekman <stas@stason.org> Co-authored-by:
Stas Bekman <stas00@users.noreply.github.com> Co-authored-by:
suriya <suriya@cortx.com> Co-authored-by:
Manuel R. Ciosici <manuelrciosici@gmail.com>
-
- 30 Nov, 2021 3 commits
-
-
Suraj Patil authored
* init vision_text_dual_encoder * fix merge * remove extra heads * fix tests * remove VISION_TEXT_DUAL_ENCODER_PRETRAINED_CONFIG_ARCHIVE_MAP * remove archive map * fix imports * fix more imports * fix init * delete tokenizers * fix imports * clean * support clip's vision model * handle None config * begin tests * more test and few fixes * warn about newly init weights * more tests * add loss to model * remove extra classes from doc * add processor * doc and small fixes * add start docstr * update flax model * flax tests * more flax tests * doc * quality * doc and quality * fix doc * doc * remove comments * update warning * quality * fix docs * Apply suggestions from code review Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * replace asserts, fix imports * update imports * fix import * address some review comments * fix check * reduce tolerance * fix test * add flax integration test * Apply suggestions from code review Co-authored-by:
Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * address Sylvain's comments * fix style * add pt_flax_equivalence test in PT tests * add pt integration test * update test * use pre-trained checkpoint in examples Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> Co-authored-by:
Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
-
Daniel Stancl authored
* Init Flax implementation for Blenderbot * Add a majority of stuff except for tests * make style quality * Add tests and fix some bugs * Add tests * Clean source code and fix some bugs * Fix copies and docs * Fix jax device condition for tests * Fix layer norm in the encoder * Fix a few typos in the test file * make fix-copies * make fix-copies * fix layer norm * Fix Flax params dtype (#13090) * Fix PR reference (#13098) * make fix-copies * Update tests/test_modeling_flax_blenderbot.py Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> Co-authored-by:
Suraj Patil <surajp815@gmail.com>
-
Kamal Raj authored
* TF Tapas first commit * updated docs * updated logger message * updated pytorch weight conversion script to support scalar array * added use_cache to tapas model config to work properly with tf input_processing * 1. rm embeddings_sum 2. added # Copied 3. + TFTapasMLMHead 4. and lot other small fixes * updated docs * + test for tapas * updated testing_utils to check is_tensorflow_probability_available * converted model logits post processing using numpy to work with both PT and TF models * + TFAutoModelForTableQuestionAnswering * added TF support * added test for TFAutoModelForTableQuestionAnswering * added test for TFAutoModelForTableQuestionAnswering pipeline * updated auto model docs * fixed typo in import * added tensorflow_probability to run tests * updated MLM head * updated tapas.rst with TF model docs * fixed optimizer import in docs * updated convert to np data from pt model is not `transformers.tokenization_utils_base.BatchEncoding` after pipeline upgrade * updated pipeline: 1. with torch.no_gard removed, pipeline forward handles 2. token_type_ids converted to numpy * updated docs. * removed `use_cache` from config * removed floats_tensor * updated code comment * updated Copyright Year and logits_aggregation Optional * updated docs and comments * updated docstring * fixed model weight loading * make fixup * fix indentation * added tf slow pipeline test * pip upgrade * upgrade python to 3.7 * removed from_pt from tests * revert commit f18cfa9
-
- 29 Nov, 2021 1 commit
-
-
NielsRogge authored
* Rename * Add MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING
-
- 25 Nov, 2021 1 commit
-
-
Nicolas Patry authored
-
- 24 Nov, 2021 1 commit
-
-
NielsRogge authored
* Improve tests * Install vision for tf tests
-
- 23 Nov, 2021 1 commit
-
-
Stas Bekman authored
* [deepspeed] zero inference * only z3 makes sense for inference * fix and style * docs * rework * fix test * Apply suggestions from code review Co-authored-by:
Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * responding to suggestions Co-authored-by:
Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
-
- 22 Nov, 2021 2 commits
-
-
Sylvain Gugger authored
* Add AutoProcessor class * Init and tests * Add doc * Fix init * Update src/transformers/models/auto/processing_auto.py Co-authored-by:
Lysandre Debut <lysandre@huggingface.co> * Reverts to tokenizer or feature extractor when available * Adapt test Co-authored-by:
Lysandre Debut <lysandre@huggingface.co>
-
Nicolas Patry authored
* Moving everything to `hf-internal-testing`. * Fixing test values. * Moving to other repo. * Last touch?
-
- 19 Nov, 2021 4 commits
-
-
Shang Zhang authored
* clean up branch for add-qdqbert-model * README update for QAT example; update docstrings in modeling_qdqbert.py * Update qdqbert.rst * Update README.md * Update README.md * calibration data using traning set; QAT example runs in fp32 * re-use BERTtokenizer for qdqbert * Update docs/source/model_doc/qdqbert.rst Co-authored-by:
Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * Update docs/source/model_doc/qdqbert.rst Co-authored-by:
Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * Update docs/source/model_doc/qdqbert.rst Co-authored-by:
Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * remove qdqbert tokenizer * Update qdqbert.rst * update evaluate-hf-trt-qa.py * update configuration_qdqbert.py * update modeling_qdqbert.py: add copied statement; replace assert with ValueError * update copied from statement * add is_quantization_available; run make fix-copies * unittest add require_quantization * add backend dependency to qdqbert model * update README; update evaluate script; make style * lint * docs qdqbert update * circleci build_doc add pytorch-quantization for qdqbert * update README * update example readme with instructions to upgrade TensorRT to 8.2 * Update src/transformers/models/qdqbert/configuration_qdqbert.py Co-authored-by:
Lysandre Debut <lysandre@huggingface.co> * Update src/transformers/models/qdqbert/configuration_qdqbert.py Co-authored-by:
Lysandre Debut <lysandre@huggingface.co> * Update src/transformers/models/qdqbert/configuration_qdqbert.py Co-authored-by:
Lysandre Debut <lysandre@huggingface.co> * Update src/transformers/models/qdqbert/configuration_qdqbert.py Co-authored-by:
Lysandre Debut <lysandre@huggingface.co> * change quantization to pytorch_quantization for backend requirement * feed_forward_chunking not supported in QDQBert * make style * update model docstrings and comments in testing scripts * rename example to quantization-qdqbert; rename example scripts from qat to quant * Update src/transformers/models/qdqbert/modeling_qdqbert.py Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * rm experimental functions in quant_trainer * qa cleanup * make fix-copies for docs index.rst * fix doctree; use post_init() for qdqbert * fix early device assignment for qdqbert * fix CI:Model templates runner Co-authored-by:
Sylvain Gugger <35901082+sgugger@users.noreply.github.com> Co-authored-by:
Lysandre Debut <lysandre@huggingface.co> Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com>
-
Nicolas Patry authored
support.
-
Patrick von Platen authored
* up * finalize * finalize * finish * Update src/transformers/generation_utils.py * apply feedback
-
NielsRogge authored
* Add integration test * Fix typo
-
- 18 Nov, 2021 3 commits
-
-
Sylvain Gugger authored
-
NielsRogge authored
* First draft * More improvements * Improve conversion script * Fix init weights for layer norm * Fix correct model for conversion script * Don't tie input and output embeddings * Add print statements for debugging * Add print statements for debugging * Fix vocab size of model * Improve documentation, remove fast tokenizer * Add ImageGPTForImageClassification, improve docs * Fix docs issue * Set verbosity level back to info * Improve tests * Fix tests and add figure * Delete tokenizer file * Remove ImageGPTTokenizer from init files * Remove ImageGPTLayer from init files * Remove ImageGPT tokenizer from docs * First draft of ImageGPTFeatureExtractor * Fix typo * Fix bug * More improvements * Apply suggestions from code review, add tests for feature extractor * Fix layernorm * Update save_pretrained method * Fix issue * Make all tests of ImageGPTFeatureExtractor pass * Update code examples * Rename model inputs to pixel_values * Improve code examples * Update init_weights to post_init * Fix post_init
-
Sylvain Gugger authored
* Add a post init method to all models * Fix tests * Fix last tests * Fix templates * Add comment * Forgot to save
-
- 17 Nov, 2021 3 commits
-
-
N authored
* test: make sure model configs are jsonifiable * fix: return python dict instead of config object * fix: accept pretrained config and use correct class * Re-enabling slow tests and applying them to core models only * Re-enabling slow tests and applying them to core models only * Add new test file to fetcher * Remove tooslow tests from test_modeling_tf_common.py * make style * Style fixes * Style fixes * Style fixes * Style fixes * Adding core tests to GPT2 and BART * Removing unused imports Co-authored-by:
niklas.fruehauf <niklas.fruehauf@sovanta.com> Co-authored-by:
matt <rocketknight1@gmail.com>
-
NielsRogge authored
* Improve tests * Improve documentation * Add ignore_index attribute * Add semantic_ignore_index to BEiT model * Add segmentation maps argument to BEiTFeatureExtractor * Simplify SegformerFeatureExtractor and corresponding tests * Improve tests * Apply suggestions from code review * Minor docs improvements * Streamline segmentation map tests of SegFormer and BEiT * Improve reduce_labels docs and test * Fix code quality * Fix code quality again
-
Patrick von Platen authored
* add new wav2vec2 translation * correct * up * add tests * correct end copy * correct more * up * correct unispeech sat * finish * finalize * finish * up
-
- 16 Nov, 2021 2 commits
-
-
Valentin authored
* stop training when a finite IterableDataset is exhausted when using an iterable dataset num_epochs is set to sys.maxsize to make sure all data is consumed likewise we want to set max_steps high enough but still stop when all data is consumed (cherry picked from commit 6f0e1d6363153da9051e93acffe1cbab3a3f3b12) * fix typo flase -> false * add test for stopping training on exhausted finite iterable dataset * remove redundant gradient_accumulation_steps * run make style reformat training_args docstring
-
Sylvain Gugger authored
* Fix gradient_checkpointing backward compatibility * Remove needless line * make sure mask prob is big enough and length small enough * Fix tests Co-authored-by:patrickvonplaten <patrick.v.platen@gmail.com>
-
- 15 Nov, 2021 4 commits
-
-
Lysandre Debut authored
* Allow per-version configurations * Update tests/test_configuration_common.py Co-authored-by:
Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * Update tests/test_configuration_common.py Co-authored-by:
Sylvain Gugger <35901082+sgugger@users.noreply.github.com> Co-authored-by:
Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
-
Yih-Dar authored
Co-authored-by:ydshieh <ydshieh@users.noreply.github.com>
-
NielsRogge authored
-
Patrick von Platen authored
* [Speech2Text2] Enable tokenizers * minor fix * Apply suggestions from code review Co-authored-by:
Sylvain Gugger <35901082+sgugger@users.noreply.github.com> Co-authored-by:
Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
-
- 13 Nov, 2021 1 commit
-
-
Suraj Patil authored
* add return_tensors paramter * fix test * Apply suggestions from code review Co-authored-by:
Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * style Co-authored-by:
Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
-
- 12 Nov, 2021 1 commit
-
-
Nicolas Patry authored
* Adding support for raw python `generator` in addition to `Dataset` The main goal is to ease the create of streaming data to the pipe. `Dataset` is more involved and pytorch specific. This PR, provides a way to use a python iterator too. This enabled #14250 but can be proposed as a standalone PR. ```python from transformers import pipeline def read_data(filename): with open(filename, 'r') as f: for line in f: yield f pipe = pipeline("text-classification") for classified in pipe(read_data("large_file.txt")): print("Success ! ", classified) ``` The main caveat of this, is the interaction with `DataLoader` with `num_workers>1`. When you have multiple workers, each receive a copy of the generator (like `IterableDataset`). That means the naive Iterator will fail since all workers iterate on all items of the generator. There are ways to do clever "skipping", but it could be bad still because all workers still do have to pass through all items of the generator (they just ignore items they don't handle), depending on the case it might be bad. Using `num_workers=1` is the simplest fix and if the cost of loading your data is small enough should be good enough. In the above example trying to do smart tricks to skip some lines is unlikely to be a net positive for instance. If there are better ways to do "jumps" on some data, then using `Dataset` is more advised (since then differents workers can just jump themselves). * Adding iterator support for `tf` too.
-
- 11 Nov, 2021 4 commits
-
-
Suraj Patil authored
* fix loading flax bf16 weights in pt * fix clip test * fix t5 test * add logging statement * Update src/transformers/modeling_flax_pytorch_utils.py Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * switch back to native any * fix check for bf16 weights Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com>
-
Matt authored
* Experimenting with adding proper get_config() and from_config() methods * Adding a test for get/from config * Fix test for get/from config
-
Suraj Patil authored
* fix inits * fix embed dtype * fix embed dtype * add test to check default dtype * quality * add type conversion methods for flax models * more robust casting * cast sinusoidal positions * update pegasus * update albert * update test * make sure dtype is passed to every module * style * fix electra dense * fix t5 * quality * add more tests * better name * use the dtype for lm head computation * fix albert * style * fix albert embed dtype * more tests * fix vision enc-dec * cleanup * fix embed dtype pegasus * fix default param test * doc * update template * fix final_logits_bias dtype * Apply suggestions from code review Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * fix doc * fix doc * add detailed docstring for dtype parameter * remove un-necessary import Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com>
-
Stas Bekman authored
-
- 10 Nov, 2021 2 commits
-
-
Li-Huai (Allan) Lin authored
* Fix index out of range when padding * Apply suggestions from code review * Style
-
Nicolas Patry authored
* Adding some quality of life for `pipeline` function. * Update docs/source/main_classes/pipelines.rst Co-authored-by:
Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * Update src/transformers/pipelines/__init__.py Co-authored-by:
Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * Improve the tests. Co-authored-by:
Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
-
- 09 Nov, 2021 5 commits
-
-
Patrick von Platen authored
* [Bert2Bert] allow bert2bert + relative embeddings * up * Update README_ko.md * up * up
-
Yih-Dar authored
Co-authored-by:ydshieh <ydshieh@users.noreply.github.com>
-
Yih-Dar authored
* Start the work for TFViTModel * Convert to TF code - need to check in the follow up commits * Clean up model code * Expose TFViTModel * make style * make quality * Add test * make style & quality * Fix some imports * fix wrong usage - *kwargs => ** kwargs * Fix Conv2D weight loading (PT->TF) issue * Add tests for images with different sizes + fix model * Fix some common tests for TFViTModel * Use inputs instead of input_ids in test_compile_tf_model * Add a comment about transpose and Conv2D in convert_tf_weight_name_to_pt_weight_name * Avoid transpose in TFViT call * Fix Conv2D issue in load_tf2_weights_in_pytorch_model * Use tf.keras.layers.Conv2D instead of tf.nn.conv2d * Using simpler heuristic to detect Conv2D layer * Change convert_tf_weight_name_to_pt_weight_name to return TransposeType * Check tf_weight_shape is not None before using it * Apply suggestions from code review Co-authored-by:
Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * fix missing comma * fix input dtype Co-authored-by:
ydshieh <ydshieh@users.noreply.github.com> Co-authored-by:
Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
-
Apoorv Garg authored
* correct order of overflowing tokens for LayoutLmV2 tokenizer * test to check order of overflowing_tokens for a seq of input_ids * fix up quality * added suggested changes * check that tests the bbox sequence * pair_input test added * pass quality test * check bbox sequence added * unittest method * comments added * add overflowing bbox test * improved "seq_1" Co-authored-by:
SaulLu <55560583+SaulLu@users.noreply.github.com> * improve code quality Co-authored-by:
SaulLu <lucilesaul.com@gmail.com> Co-authored-by:
SaulLu <55560583+SaulLu@users.noreply.github.com>
-
Yih-Dar authored
* Start the work on FlaxVisionEncoderDecoderModel * Add FlaxVisionEncoderDecoderModel * Add VisionEncoderDecoderConfig * Make FlaxVisionEncoderDecoderModel visible to transformers * Add test * Fix wrong getattr usage * Fix tests * Add FlaxAutoModelForVision2Seq * Expose FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING * clean-up * add integration test * update expected logits * update expected scores * Add ViT2GPT2ModelIntegrationTest + some cleaning * Add projection layer + PT/Flax equivalence tests * Fix import * minor changes * make test slow again * Apply suggestions * Add modeling_flax_vision_encoder_decoder to _ignore_modules in get_model_modules() * fix copies * Apply suggestions from code review Co-authored-by:
Suraj Patil <surajp815@gmail.com> * split long strings in multiple lines * decoder_input_ids can't be None * Add back test_configuration_tie * Remove attention_mask parameter * fix test - encoder_last_hidden_state should be encoder_outputs.last_hidden_state instead of the projected vector * Apply suggestions from code review Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * Remove more encoder_attention_mask * remove encoder_attention_mask when calling self.decode (in FlaxVisionEncoderDecoderModule) * Fix style + pass 1s instead of None as encoder_attention_mask * fix init_weights * pass None for encoder_attention_mask * pass 1s instead of None as encoder_attention_mask * Fix doc style Co-authored-by:
ydshieh <ydshieh@users.noreply.github.com> Co-authored-by:
Suraj Patil <surajp815@gmail.com> Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com>
-