1. 02 Nov, 2023 1 commit
  2. 24 Mar, 2023 1 commit
    • Mitch Naylor's avatar
      Add Mega: Moving Average Equipped Gated Attention (#21766) · 57f25f4b
      Mitch Naylor authored
      
      
      * add mega file structure and plain pytorch version of mega source code
      
      * added config class with old naming conventions
      
      * filled in mega documentation
      
      * added config class and embeddings with optional token types
      
      * updated notes
      
      * starting the conversion process, deleted intermediate and added use_cache back to config
      
      * renamed config attributes in modeling_mega.py
      
      * checkpointing before refactoring incremental decoding functions
      
      * removed stateful incremental key/values for EMA and self-attention
      
      * refactored MovingAverageGatedAttention to remove stateful k/v history and use unified attention mask
      
      * MovingAverageGatedAttention works with incremental decoding + past values, added sequence length enforcement
      
      * more comments in MovingAverageGatedAttention + checkpointing before GatedCrossAttention
      
      * bug fix in attention mask handling in MovingAverageGatedAttention
      
      * removed incremental state from GatedCrossAttention and removed IncrementalState class
      
      * finished gated cross attention and got MegaLayer working
      
      * fixed causal masking in mega decoder
      
      * fixed how padding and causal masks are passed through MegaLayer with and without k/v caching
      
      * finished MegaModel; tested with encoder, decoder-only, and cross-attention type inputs; started work on downstream classes; removed mentions of position_ids
      
      * added optional dense hidden layer for masked and causal LM classes
      
      * docstring updates in MultiHeadEMA and GatedCrossAttention, removed unnecessary inputs in cross-attention
      
      * removed before_attn_fn in Mega class and updated docstrings and comments up to there
      
      * bug fix in MovingAverageGatedAttention masking
      
      * working conversion of MLM checkpoint in scratchpad script -- perfect matches
      
      * moved arg for hidden dense layer in LM head to config; discovered issue where from_pretrained is renaming gamma and beta parameters
      
      * renamed gamma and beta parameters to avoid HF renaming when loading from checkpoint
      
      * finished checkpoint conversion script
      
      * cleanup old class in mega config script
      
      * removed 'copied from' statements and passing integration tests
      
      * added num_attention_heads=1 to config for integration compatibility, decoder tests working, generation tests failing
      
      * fixed tuple output of megamodel
      
      * all common tests passing after fixing issues in decoder, gradient retention, and initialization
      
      * added mega-specific tests, ready for more documentation and style checks
      
      * updated docstrings; checkpoint before style fixes
      
      * style and quality checks, fixed initialization problem in float_tensor, ready for PR
      
      * added mega to toctree
      
      * removed unnecessary arg in megaconfig
      
      * removed unused arg and fixed code samples with leftover roberta models
      
      * Apply suggestions from code review
      
      Applied all suggestions except the one renaming a class, as I'll need to update that througout
      Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>
      
      * fixed issue where .view breaks batch dimension, conversion script fixed with absolute imports, updated readme with Mega->MEGA
      
      * removed asserts in Mega code, renamed sequencenorm, gatedcrossattention, and NFFN, replaced get_activation_fn with ACTFN, and added sequencenorm to layer norms
      
      * reformatted .forward() docstrings to match style and removed unused mask input in cross-attention
      
      * removed all reset_parameters() methods and rolled into MegaPreTrainedModel._init_weights()
      
      * renamed all single-letter variables and improved readability in tensor size comments, Mega->MEGA in 2 documentation files
      
      * variable names in NFFN
      
      * manual Mega->MEGA changes in docs
      
      * Mega->MEGA in config auto
      
      * style and quality fixes
      
      * Apply suggestions from code review
      Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>
      
      * renamed parameters and variables with confusing names, added copied from statements, moved fft conv to its own method, other cleanup from PR comments
      
      * commit before dealing with merge conflicts
      
      * made new attention activation functions available in ACT2FN and added generation test from OPT
      
      * style and quality in activations and tests
      
      * documentation fixes, renaming variables in dropout and rotary positions, used built-in causal masking, encoders->layers in MegaModel, moved comments into docstrings
      
      * style and quality fixes after latest updates, before rotary position ids
      
      * causal mask in MegaBlock docstring + added missing device passing
      
      * Apply suggestions from code review
      Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>
      
      * Update README.md
      Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>
      
      * added Mega prefixes where missing, reverted MegaSequenceNorm to if-else, other module renaming requested in PR
      
      * style and quality fixes + readme updates pointing to main
      
      ---------
      Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>
      Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>
      57f25f4b
  3. 02 Feb, 2023 1 commit
  4. 14 Nov, 2022 1 commit
    • Matthijs Hollemans's avatar
      add MobileNetV2 model (#17845) · f711d683
      Matthijs Hollemans authored
      * add model files etc for MobileNetV2
      
      * rename files for MobileNetV1
      
      * initial implementation of MobileNetV1
      
      * fix conversion script
      
      * cleanup
      
      * write docs
      
      * tweaks
      
      * fix conversion script
      
      * extract hidden states
      
      * fix test cases
      
      * make fixup
      
      * fixup it all
      
      * rename V1 to V2
      
      * fix checkpoints
      
      * fixup
      
      * implement first block + weight conversion
      
      * add remaining layers
      
      * add output stride and dilation
      
      * fixup
      
      * add tests
      
      * add deeplabv3+ head
      
      * a bit of fixup
      
      * finish deeplab conversion
      
      * add link to doc
      
      * fix issue with JIT trace
      
      in_height and in_width would be Tensor objects during JIT trace, which caused Core ML conversion to fail on the remainder op. By making them ints, the result of the padding calculation becomes a constant value.
      
      * cleanup
      
      * fix order of models
      
      * fix rebase error
      
      * remove main from doc link
      
      * add image processor
      
      * remove old feature extractor
      
      * fix converter + other issues
      
      * fixup
      
      * fix unit test
      
      * add to onnx tests (but these appear broken now)
      
      * add post_process_semantic_segmentation
      
      * use google org
      
      * remove unused imports
      
      * move args
      
      * replace weird assert
      f711d683
  5. 20 Oct, 2022 1 commit
  6. 18 Oct, 2022 1 commit
  7. 14 Sep, 2022 1 commit
  8. 03 Aug, 2022 1 commit
    • LSinev's avatar
      Fix torch version comparisons (#18460) · 02b176c4
      LSinev authored
      Comparisons like
      version.parse(torch.__version__) > version.parse("1.6")
      are True for torch==1.6.0+cu101 or torch==1.6.0+cpu
      
      version.parse(version.parse(torch.__version__).base_version) are preferred (and available in pytorch_utils.py
      02b176c4
  9. 19 Apr, 2022 1 commit
  10. 22 Feb, 2022 1 commit
    • Funtowicz Morgan's avatar
      Gelu10 (#15676) · 32295b15
      Funtowicz Morgan authored
      * Add GeLU10 (clipped version of GeLU) to transformers to improve quantization performances.
      
      * Add unittests.
      
      * Import tensorflow after `is_tf_available` check.
      
      * Fix tensorflow wrong function `tf.tensor` to `tf.constant`
      
      * style.
      
      * use `tf.math.max`
      
      * Fix tf tests.
      
      * style.
      
      * style style style style style style
      
      * style style style style style style
      
      * Address @sgugger comments.
      
      * Fix wrong operator for raising ValueError for ClippedGELUActivation.
      32295b15
  11. 18 Feb, 2022 1 commit
  12. 16 Feb, 2022 1 commit
  13. 28 Oct, 2021 1 commit
  14. 18 Jun, 2021 1 commit
  15. 14 Jun, 2021 1 commit
  16. 12 May, 2021 1 commit
    • Suraj Patil's avatar
      CLIP (#11445) · 8719afa1
      Suraj Patil authored
      
      
      * begin second draft
      
      * fix import, style
      
      * add loss
      
      * fix embeds, logits_scale, and projection
      
      * fix imports
      
      * add conversion script
      
      * add feature_extractor and processor
      
      * style
      
      * add tests for tokenizer, extractor and processor
      
      * add vision model tests
      
      * add weight init
      
      * add more tests
      
      * fix save_load  test
      
      * model output, dosstrings, causal mask
      
      * config doc
      
      * add clip model tests
      
      * return dict
      
      * bigin integration test
      
      * add integration tests
      
      * fix-copies
      
      * fix init
      
      * Clip => CLIP
      
      * fix module name
      
      * docs
      
      * fix doc
      
      * output_dim => projection_dim
      
      * fix checkpoint names
      
      * remoe fast tokenizer file
      
      * fix conversion script
      
      * fix tests, quality
      
      * put causal mask on device
      
      * Apply suggestions from code review
      Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>
      
      * fix attribute test
      
      * style
      
      * address sylvains comments
      
      * style
      
      * fix docstrings
      
      * add qucik_gelu in activations, docstrings
      
      * clean-up attention test
      
      * fix act fun
      
      * fix config
      
      * fix torchscript tests
      
      * even batch_size
      
      * remove comment
      
      * fix ouput tu_tuple
      
      * fix save load tests
      
      * fix add tokens test
      
      * add fast tokenizer
      
      * update copyright
      
      * new processor API
      
      * fix docs
      
      * docstrings
      
      * docs
      
      * fix doc
      
      * fix doc
      
      * fix tokenizer
      
      * fix import in doc example
      
      * Apply suggestions from code review
      Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>
      
      * check types of config
      
      * valhalla => openai
      
      * load image using url
      
      * fix test
      
      * typo
      Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>
      8719afa1
  17. 31 Mar, 2021 1 commit
  18. 07 Dec, 2020 1 commit
  19. 30 Oct, 2020 1 commit
    • TFUsers's avatar
      Replace swish with silu (#8166) · 00112c35
      TFUsers authored
      
      
      * Replace swish with silu
      
      * revert nn.silu to nn.swish due to older version
      
      * simplify optimized silu conditional and fix format
      
      * Update activations.py
      
      * Update activations_tf.py
      
      * Update modeling_flax_utils.py
      
      * Update modeling_openai.py
      
      * add swish testcase
      
      * add pytorch swish testcase
      
      * Add more robust python version check
      
      * more formatting fixes
      Co-authored-by: default avatarTFUsers <TFUsers@gmail.com>
      00112c35
  20. 26 Oct, 2020 1 commit
    • Sylvain Gugger's avatar
      Doc styling (#8067) · 08f534d2
      Sylvain Gugger authored
      * Important files
      
      * Styling them all
      
      * Revert "Styling them all"
      
      This reverts commit 7d029395fdae8513b8281cbc2a6c239f8093503e.
      
      * Syling them for realsies
      
      * Fix syntax error
      
      * Fix benchmark_utils
      
      * More fixes
      
      * Fix modeling auto and script
      
      * Remove new line
      
      * Fixes
      
      * More fixes
      
      * Fix more files
      
      * Style
      
      * Add FSMT
      
      * More fixes
      
      * More fixes
      
      * More fixes
      
      * More fixes
      
      * Fixes
      
      * More fixes
      
      * More fixes
      
      * Last fixes
      
      * Make sphinx happy
      08f534d2
  21. 17 Oct, 2020 1 commit
  22. 30 Sep, 2020 1 commit
  23. 24 Sep, 2020 1 commit
  24. 22 Sep, 2020 1 commit
  25. 26 Aug, 2020 2 commits
  26. 11 May, 2020 1 commit
  27. 07 May, 2020 1 commit
    • Patrick von Platen's avatar
      Reformer (#3351) · dca34695
      Patrick von Platen authored
      * first copy & past commit from Bert and morgans LSH code
      
      * add easy way to compare to trax original code
      
      * translate most of function
      
      * make trax lsh self attention deterministic with numpy seed + copy paste code
      
      * add same config
      
      * add same config
      
      * make layer init work
      
      * implemented hash_vectors function for lsh attention
      
      * continue reformer translation
      
      * hf LSHSelfAttentionLayer gives same output as trax layer
      
      * refactor code
      
      * refactor code
      
      * refactor code
      
      * refactor
      
      * refactor + add reformer config
      
      * delete bogus file
      
      * split reformer attention layer into two layers
      
      * save intermediate step
      
      * save intermediate step
      
      * make test work
      
      * add complete reformer block layer
      
      * finish reformer layer
      
      * implement causal and self mask
      
      * clean reformer test and refactor code
      
      * fix merge conflicts
      
      * fix merge conflicts
      
      * update init
      
      * fix device for GPU
      
      * fix chunk length init for tests
      
      * include morgans optimization
      
      * improve memory a bit
      
      * improve comment
      
      * factorize num_buckets
      
      * better testing parameters
      
      * make whole model work
      
      * make lm model work
      
      * add t5 copy paste tokenizer
      
      * add chunking feed forward
      
      * clean config
      
      * add improved assert statements
      
      * make tokenizer work
      
      * improve test
      
      * correct typo
      
      * extend config
      
      * add complexer test
      
      * add new axial position embeddings
      
      * add local block attention layer
      
      * clean tests
      
      * refactor
      
      * better testing
      
      * save intermediate progress
      
      * clean test file
      
      * make shorter input length work for model
      
      * allow variable input length
      
      * refactor
      
      * make forward pass for pretrained model work
      
      * add generation possibility
      
      * finish dropout and init
      
      * make style
      
      * refactor
      
      * add first version of RevNet Layers
      
      * make forward pass work and add convert file
      
      * make uploaded model forward pass work
      
      * make uploaded model forward pass work
      
      * refactor code
      
      * add namedtuples and cache buckets
      
      * correct head masks
      
      * refactor
      
      * made reformer more flexible
      
      * make style
      
      * remove set max length
      
      * add attention masks
      
      * fix up tests
      
      * fix lsh attention mask
      
      * make random seed optional for the moment
      
      * improve memory in reformer
      
      * add tests
      
      * make style
      
      * make sure masks work correctly
      
      * detach gradients
      
      * save intermediate
      
      * correct backprob through gather
      
      * make style
      
      * change back num hashes
      
      * rename to labels
      
      * fix rotation shape
      
      * fix detach
      
      * update
      
      * fix trainer
      
      * fix backward dropout
      
      * make reformer more flexible
      
      * fix conflict
      
      * fix
      
      * fix
      
      * add tests for fixed seed in reformer layer
      
      * fix trainer typo
      
      * fix typo in activations
      
      * add fp16 tests
      
      * add fp16 training
      
      * support fp16
      
      * correct gradient bug in reformer
      
      * add fast gelu
      
      * re-add dropout for embedding dropout
      
      * better naming
      
      * better naming
      
      * renaming
      
      * finalize test branch
      
      * finalize tests
      
      * add more tests
      
      * finish tests
      
      * fix
      
      * fix type trainer
      
      * fix fp16 tests
      
      * fix tests
      
      * fix tests
      
      * fix tests
      
      * fix issue with dropout
      
      * fix dropout seeds
      
      * correct random seed on gpu
      
      * finalize random seed for dropout
      
      * finalize random seed for dropout
      
      * remove duplicate line
      
      * correct half precision bug
      
      * make style
      
      * refactor
      
      * refactor
      
      * docstring
      
      * remove sinusoidal position encodings for reformer
      
      * move chunking to modeling_utils
      
      * make style
      
      * clean config
      
      * make style
      
      * fix tests
      
      * fix auto tests
      
      * pretrained models
      
      * fix docstring
      
      * update conversion file
      
      * Update pretrained_models.rst
      
      * fix rst
      
      * fix rst
      
      * update copyright
      
      * fix test path
      
      * fix test path
      
      * fix small issue in test
      
      * include reformer in generation tests
      
      * add docs for axial position encoding
      
      * finish docs
      
      * Update convert_reformer_trax_checkpoint_to_pytorch.py
      
      * remove isort
      
      * include sams comments
      
      * remove wrong comment in utils
      
      * correct typos
      
      * fix typo
      
      * Update reformer.rst
      
      * applied morgans optimization
      
      * make style
      
      * make gpu compatible
      
      * remove bogus file
      
      * big test refactor
      
      * add example for chunking
      
      * fix typo
      
      * add to README
      dca34695
  28. 29 Apr, 2020 1 commit
  29. 23 Apr, 2020 1 commit
  30. 16 Apr, 2020 2 commits
  31. 03 Apr, 2020 1 commit
  32. 19 Mar, 2020 1 commit
  33. 21 Feb, 2020 1 commit
  34. 13 Feb, 2020 1 commit