1. 14 May, 2020 1 commit
  2. 13 May, 2020 2 commits
  3. 12 May, 2020 1 commit
  4. 10 May, 2020 1 commit
  5. 08 May, 2020 1 commit
  6. 07 May, 2020 4 commits
    • Jared T Nielsen's avatar
      Add AlbertForPreTraining and TFAlbertForPreTraining models. (#4057) · 8bf73126
      Jared T Nielsen authored
      
      
      * Add AlbertForPreTraining and TFAlbertForPreTraining models.
      
      * PyTorch conversion
      
      * TensorFlow conversion
      
      * style
      Co-authored-by: default avatarLysandre <lysandre.debut@reseau.eseo.fr>
      8bf73126
    • Julien Chaumond's avatar
      BIG Reorganize examples (#4213) · 0ae96ff8
      Julien Chaumond authored
      * Created using Colaboratory
      
      * [examples] reorganize files
      
      * remove run_tpu_glue.py as superseded by TPU support in Trainer
      
      * Bugfix: int, not tuple
      
      * move files around
      0ae96ff8
    • Funtowicz Morgan's avatar
      Rewritten batch support in pipelines. (#4154) · 0a6cbea0
      Funtowicz Morgan authored
      
      
      * Rewritten batch support in pipelines.
      Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>
      
      * Fix imports sorting 馃敡
      
      Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>
      
      * Set pad_to_max_length=True by default on Pipeline.
      
      * Set pad_to_max_length=False for generation pipelines.
      
      Most of generation models doesn't have padding token.
      
      * Address @joeddav review comment: Uniformized *args.
      Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>
      
      * Address @joeddav review comment: Uniformized *args (second).
      Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>
      0a6cbea0
    • Patrick von Platen's avatar
      Reformer (#3351) · dca34695
      Patrick von Platen authored
      * first copy & past commit from Bert and morgans LSH code
      
      * add easy way to compare to trax original code
      
      * translate most of function
      
      * make trax lsh self attention deterministic with numpy seed + copy paste code
      
      * add same config
      
      * add same config
      
      * make layer init work
      
      * implemented hash_vectors function for lsh attention
      
      * continue reformer translation
      
      * hf LSHSelfAttentionLayer gives same output as trax layer
      
      * refactor code
      
      * refactor code
      
      * refactor code
      
      * refactor
      
      * refactor + add reformer config
      
      * delete bogus file
      
      * split reformer attention layer into two layers
      
      * save intermediate step
      
      * save intermediate step
      
      * make test work
      
      * add complete reformer block layer
      
      * finish reformer layer
      
      * implement causal and self mask
      
      * clean reformer test and refactor code
      
      * fix merge conflicts
      
      * fix merge conflicts
      
      * update init
      
      * fix device for GPU
      
      * fix chunk length init for tests
      
      * include morgans optimization
      
      * improve memory a bit
      
      * improve comment
      
      * factorize num_buckets
      
      * better testing parameters
      
      * make whole model work
      
      * make lm model work
      
      * add t5 copy paste tokenizer
      
      * add chunking feed forward
      
      * clean config
      
      * add improved assert statements
      
      * make tokenizer work
      
      * improve test
      
      * correct typo
      
      * extend config
      
      * add complexer test
      
      * add new axial position embeddings
      
      * add local block attention layer
      
      * clean tests
      
      * refactor
      
      * better testing
      
      * save intermediate progress
      
      * clean test file
      
      * make shorter input length work for model
      
      * allow variable input length
      
      * refactor
      
      * make forward pass for pretrained model work
      
      * add generation possibility
      
      * finish dropout and init
      
      * make style
      
      * refactor
      
      * add first version of RevNet Layers
      
      * make forward pass work and add convert file
      
      * make uploaded model forward pass work
      
      * make uploaded model forward pass work
      
      * refactor code
      
      * add namedtuples and cache buckets
      
      * correct head masks
      
      * refactor
      
      * made reformer more flexible
      
      * make style
      
      * remove set max length
      
      * add attention masks
      
      * fix up tests
      
      * fix lsh attention mask
      
      * make random seed optional for the moment
      
      * improve memory in reformer
      
      * add tests
      
      * make style
      
      * make sure masks work correctly
      
      * detach gradients
      
      * save intermediate
      
      * correct backprob through gather
      
      * make style
      
      * change back num hashes
      
      * rename to labels
      
      * fix rotation shape
      
      * fix detach
      
      * update
      
      * fix trainer
      
      * fix backward dropout
      
      * make reformer more flexible
      
      * fix conflict
      
      * fix
      
      * fix
      
      * add tests for fixed seed in reformer layer
      
      * fix trainer typo
      
      * fix typo in activations
      
      * add fp16 tests
      
      * add fp16 training
      
      * support fp16
      
      * correct gradient bug in reformer
      
      * add fast gelu
      
      * re-add dropout for embedding dropout
      
      * better naming
      
      * better naming
      
      * renaming
      
      * finalize test branch
      
      * finalize tests
      
      * add more tests
      
      * finish tests
      
      * fix
      
      * fix type trainer
      
      * fix fp16 tests
      
      * fix tests
      
      * fix tests
      
      * fix tests
      
      * fix issue with dropout
      
      * fix dropout seeds
      
      * correct random seed on gpu
      
      * finalize random seed for dropout
      
      * finalize random seed for dropout
      
      * remove duplicate line
      
      * correct half precision bug
      
      * make style
      
      * refactor
      
      * refactor
      
      * docstring
      
      * remove sinusoidal position encodings for reformer
      
      * move chunking to modeling_utils
      
      * make style
      
      * clean config
      
      * make style
      
      * fix tests
      
      * fix auto tests
      
      * pretrained models
      
      * fix docstring
      
      * update conversion file
      
      * Update pretrained_models.rst
      
      * fix rst
      
      * fix rst
      
      * update copyright
      
      * fix test path
      
      * fix test path
      
      * fix small issue in test
      
      * include reformer in generation tests
      
      * add docs for axial position encoding
      
      * finish docs
      
      * Update convert_reformer_trax_checkpoint_to_pytorch.py
      
      * remove isort
      
      * include sams comments
      
      * remove wrong comment in utils
      
      * correct typos
      
      * fix typo
      
      * Update reformer.rst
      
      * applied morgans optimization
      
      * make style
      
      * make gpu compatible
      
      * remove bogus file
      
      * big test refactor
      
      * add example for chunking
      
      * fix typo
      
      * add to README
      dca34695
  7. 06 May, 2020 1 commit
    • Julien Plu's avatar
      TF version of the trainer (#4017) · aad50151
      Julien Plu authored
      * First commit to add a TF version of the trainer.
      
      * Make the TF trainer closer to what looks the PT trainer
      
      * Refactoring common code between the PT and TF trainer into an util file.
      
      * Some bugfix + better similarity with the PT trainer
      
      * Add missing class in transformers init
      
      * Bugfix over prediction + use classification report instead of simple metrics
      
      * Fix name error
      
      * Fix optimization tests + style
      
      * Apply style
      
      * Several bugfix for multi-gpu training
      
      * Apply style
      
      * Apply style
      
      * Add glue example for the TF trainer
      
      * Several bugix + address the reviews
      
      * Fix on the TF training args file
      
      * Add a debug mode
      
      * Bugfix in utils_ner.py when segment_ids is None
      
      * Apply style
      
      * Apply style
      
      * Add TPU strategy
      
      * Fix selection strategy
      aad50151
  8. 05 May, 2020 1 commit
    • Lysandre Debut's avatar
      Pytorch 1.5.0 (#3973) · 79b1c696
      Lysandre Debut authored
      * Standard deviation can no longer be set to 0
      
      * Remove torch pinned version
      
      * 9th instead of 10th, silly me
      79b1c696
  9. 04 May, 2020 1 commit
  10. 01 May, 2020 3 commits
  11. 30 Apr, 2020 2 commits
  12. 29 Apr, 2020 1 commit
  13. 28 Apr, 2020 2 commits
  14. 22 Apr, 2020 2 commits
    • Lorenzo Ampil's avatar
      Pipeline for Text Generation: GenerationPipeline (#3758) · f16540fc
      Lorenzo Ampil authored
      
      
      * Add GenerationPipeline
      
      * Fix parameter names
      
      * Correct parameter __call__ parameters
      
      * Add model type attribute and correct function calls for prepare_input
      
      * Take out trailing commas from init attributes
      
      * Remove unnecessary tokenization line
      
      * Implement support for multiple text inputs
      
      * Apply generation support for multiple input text prompts
      
      * Take out tensor coersion
      
      * Take out batch index
      
      * Add text prompt to return sequence
      
      * Squeeze token tensore before decoding
      
      * Return only a single list of sequences if only one prompt was used
      
      * Correct results variable name
      
      * Add GenerationPipeline to SUPPORTED_TASKS with the alias , initalized w GPT2
      
      * Registedred AutoModelWithLMHead for both pt and t
      
      * Update docstring for GenerationPipeline
      
      * Add kwargs parameter to mode.generate
      
      * Take out kwargs parameter after all
      
      * Add generation pipeline example in pipeline docstring
      
      * Fix max length by squeezing tokens tensor
      
      * Apply ensure_tensor_on_device to pytorch tensor
      
      * Include generation step in torch.no_grad
      
      * Take out input from prepare_xlm_input and set 'en' as default xlm_language
      
      * Apply framework specific encoding during prepare_input
      
      * Format w make style
      
      * Move GenerationPipeline import to follow proper import sorting
      
      * Take out training comma from generation dict
      
      * Apply requested changes
      
      * Change name to TextGenerationPipeline
      
      * Apply TextGenerationPipeline rename to __init___
      
      * Changing alias to
      
      * Set input mapping as input to ensure_tensor_on_device
      
      * Fix assertion placement
      
      * Add test_text_generation
      
      * Add TextGenerationPipeline to PipelineCommonTests
      
      * Take out whitespace
      
      * Format __init__ w black
      
      * Fix __init__ style
      
      * Forman __init___
      
      * Add line to end of __init__
      
      * Correct model tokenizer set for test_text_generation
      
      * Ensure to return list of list, not list of string (to pass test)
      
      * Limit test models to only 3 to limit runtime to address circleCI timeout error
      
      * Update src/transformers/pipelines.py
      Co-Authored-By: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update src/transformers/pipelines.py
      Co-Authored-By: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update src/transformers/pipelines.py
      Co-Authored-By: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update src/transformers/pipelines.py
      Co-Authored-By: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update src/transformers/pipelines.py
      Co-Authored-By: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update tests/test_pipelines.py
      Co-Authored-By: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update src/transformers/pipelines.py
      Co-Authored-By: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update src/transformers/pipelines.py
      Co-Authored-By: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update src/transformers/pipelines.py
      Co-Authored-By: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Remove argument docstring, __init__, add additional __call__ arguments, and reformat results to list of dict
      
      * Fix blank result list
      
      * Add TextGenerationPipeline to pipelines.rst
      
      * Update src/transformers/pipelines.py
      Co-Authored-By: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update src/transformers/pipelines.py
      Co-Authored-By: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Fix typos from adding PADDING_TEXT_TOKEN_LENGTH
      
      * Fix incorrectly moved result list
      
      * Update src/transformers/pipelines.py
      Co-Authored-By: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update src/transformers/pipelines.py
      
      * Update src/transformers/pipelines.py
      
      * Update src/transformers/pipelines.py
      
      * Update src/transformers/pipelines.py
      
      * Update src/transformers/pipelines.py
      
      * Update src/transformers/pipelines.py
      
      * Update src/transformers/pipelines.py
      
      * Update src/transformers/pipelines.py
      
      * Update src/transformers/pipelines.py
      
      * Update src/transformers/pipelines.py
      
      * Update src/transformers/pipelines.py
      
      * Update src/transformers/pipelines.py
      Co-Authored-By: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Add back generation line and make style
      
      * Take out blank whitespace
      
      * Apply new alis, text-generation, to test_pipelines
      
      * Fix text generation alias in test
      
      * Update src/transformers/pipelines.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      Co-authored-by: default avatarJulien Chaumond <chaumond@gmail.com>
      f16540fc
    • Julien Chaumond's avatar
      Trainer (#3800) · dd9d483d
      Julien Chaumond authored
      * doc
      
      * [tests] Add sample files for a regression task
      
      * [HUGE] Trainer
      
      * Feedback from @sshleifer
      
      * Feedback from @thomwolf + logging tweak
      
      * [file_utils] when downloading concurrently, get_from_cache will use the cached file for subsequent processes
      
      * [glue] Use default max_seq_length of 128 like before
      
      * [glue] move DataTrainingArguments around
      
      * [ner] Change interface of InputExample, and align run_{tf,pl}
      
      * Re-align the pl scripts a little bit
      
      * ner
      
      * [ner] Add integration test
      
      * Fix language_modeling with API tweak
      
      * [ci] Tweak loss target
      
      * Don't break console output
      
      * amp.initialize: model must be on right device before
      
      * [multiple-choice] update for Trainer
      
      * Re-align to 827d6d6e
      dd9d483d
  15. 18 Apr, 2020 1 commit
    • Thomas Wolf's avatar
      Cleanup fast tokenizers integration (#3706) · 827d6d6e
      Thomas Wolf authored
      
      
      * First pass on utility classes and python tokenizers
      
      * finishing cleanup pass
      
      * style and quality
      
      * Fix tests
      
      * Updating following @mfuntowicz comment
      
      * style and quality
      
      * Fix Roberta
      
      * fix batch_size/seq_length inBatchEncoding
      
      * add alignement methods + tests
      
      * Fix OpenAI and Transfo-XL tokenizers
      
      * adding trim_offsets=True default for GPT2 et RoBERTa
      
      * style and quality
      
      * fix tests
      
      * add_prefix_space in roberta
      
      * bump up tokenizers to rc7
      
      * style
      
      * unfortunately tensorfow does like these - removing shape/seq_len for now
      
      * Update src/transformers/tokenization_utils.py
      Co-Authored-By: default avatarStefan Schweter <stefan@schweter.it>
      
      * Adding doc and docstrings
      
      * making flake8 happy
      Co-authored-by: default avatarStefan Schweter <stefan@schweter.it>
      827d6d6e
  16. 17 Apr, 2020 4 commits
  17. 16 Apr, 2020 2 commits
  18. 14 Apr, 2020 1 commit
  19. 13 Apr, 2020 1 commit
  20. 10 Apr, 2020 2 commits
  21. 09 Apr, 2020 2 commits
  22. 08 Apr, 2020 1 commit
  23. 07 Apr, 2020 2 commits
  24. 06 Apr, 2020 1 commit
    • Funtowicz Morgan's avatar
      Tokenizers v3.0.0 (#3185) · 96ab75b8
      Funtowicz Morgan authored
      
      
      * Renamed num_added_tokens to num_special_tokens_to_add
      Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>
      
      * Cherry-Pick: Partially fix space only input without special tokens added to the output #3091
      Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>
      
      * Added property is_fast on PretrainedTokenizer and PretrainedTokenizerFast
      Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>
      
      * Make fast tokenizers unittests work on Windows.
      
      * Entirely refactored unittest for tokenizers fast.
      
      * Remove ABC class for CommonFastTokenizerTest
      
      * Added embeded_special_tokens tests from allenai @dirkgr
      
      * Make embeded_special_tokens tests from allenai more generic
      
      * Uniformize vocab_size as a property for both Fast and normal tokenizers
      
      * Move special tokens handling out of PretrainedTokenizer (SpecialTokensMixin)
      
      * Ensure providing None input raise the same ValueError than Python tokenizer + tests.
      
      * Fix invalid input for assert_padding when testing batch_encode_plus
      
      * Move add_special_tokens from constructor to tokenize/encode/[batch_]encode_plus methods parameter.
      
      * Ensure tokenize() correctly forward add_special_tokens to rust.
      
      * Adding None checking on top on encode / encode_batch for TransfoXLTokenizerFast.
      Avoid stripping on None values.
      
      * unittests ensure tokenize() also throws a ValueError if provided None
      
      * Added add_special_tokens unittest for all supported models.
      
      * Style
      
      * Make sure TransfoXL test run only if PyTorch is provided.
      
      * Split up tokenizers tests for each model type.
      
      * Fix invalid unittest with new tokenizers API.
      
      * Filter out Roberta openai detector models from unittests.
      
      * Introduce BatchEncoding on fast tokenizers path.
      
      This new structure exposes all the mappings retrieved from Rust.
      It also keeps the current behavior with model forward.
      
      * Introduce BatchEncoding on slow tokenizers path.
      
      Backward compatibility.
      
      * Improve error message on BatchEncoding for slow path
      
      * Make add_prefix_space True by default on Roberta fast to match Python in majority of cases.
      
      * Style and format.
      
      * Added typing on all methods for PretrainedTokenizerFast
      
      * Style and format
      
      * Added path for feeding pretokenized (List[str]) input to PretrainedTokenizerFast.
      
      * Style and format
      
      * encode_plus now supports pretokenized inputs.
      
      * Remove user warning about add_special_tokens when working on pretokenized inputs.
      
      * Always go through the post processor.
      
      * Added support for pretokenized input pairs on encode_plus
      
      * Added is_pretokenized flag on encode_plus for clarity and improved error message on input TypeError.
      
      * Added pretokenized inputs support on batch_encode_plus
      
      * Update BatchEncoding methods name to match Encoding.
      
      * Bump setup.py tokenizers dependency to 0.7.0rc1
      
      * Remove unused parameters in BertTokenizerFast
      
      * Make sure Roberta returns token_type_ids for unittests.
      
      * Added missing typings
      
      * Update add_tokens prototype to match tokenizers side and allow AddedToken
      
      * Bumping tokenizers to 0.7.0rc2
      
      * Added documentation for BatchEncoding
      
      * Added (unused) is_pretokenized parameter on PreTrainedTokenizer encode_plus/batch_encode_plus methods.
      
      * Added higher-level typing for tokenize / encode_plus / batch_encode_plus.
      
      * Fix unittests failing because add_special_tokens was defined as a constructor parameter on Rust Tokenizers.
      
      * Fix text-classification pipeline using the wrong tokenizer
      
      * Make pipelines works with BatchEncoding
      
      * Turn off add_special_tokens on tokenize by default.
      Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>
      
      * Remove add_prefix_space from tokenize call in unittest.
      Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>
      
      * Style and quality
      Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>
      
      * Correct message for batch_encode_plus none input exception.
      Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>
      
      * Fix invalid list comprehension for offset_mapping overriding content every iteration.
      Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>
      
      * TransfoXL uses Strip normalizer.
      Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>
      
      * Bump tokenizers dependency to 0.7.0rc3
      Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>
      
      * Support AddedTokens for special_tokens and use left stripping on mask for Roberta.
      Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>
      
      * SpecilaTokenMixin can use slots to faster access to underlying attributes.
      Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>
      
      * Remove update_special_tokens from fast tokenizers.
      
      * Ensure TransfoXL unittests are run only when torch is available.
      
      * Style.
      Signed-off-by: default avatarMorgan Funtowicz <morgan@huggingface.co>
      
      * Style
      
      * Style 馃檹馃檹
      
      
      
      * Remove slots on SpecialTokensMixin, need deep dive into pickle protocol.
      
      * Remove Roberta warning on __init__.
      
      * Move documentation to Google style.
      Co-authored-by: default avatarLysandreJik <lysandre.debut@reseau.eseo.fr>
      96ab75b8