1. 22 Dec, 2023 1 commit
  2. 20 Dec, 2023 3 commits
  3. 19 Dec, 2023 1 commit
  4. 18 Dec, 2023 4 commits
  5. 15 Dec, 2023 4 commits
  6. 14 Dec, 2023 1 commit
  7. 13 Dec, 2023 3 commits
  8. 12 Dec, 2023 1 commit
  9. 11 Dec, 2023 7 commits
  10. 08 Dec, 2023 3 commits
    • fxmarty's avatar
      F.scaled_dot_product_attention support (#26572) · 80377eb0
      fxmarty authored
      
      
      * add sdpa
      
      * wip
      
      * cleaning
      
      * add ref
      
      * yet more cleaning
      
      * and more :)
      
      * wip llama
      
      * working llama
      
      * add output_attentions=True support
      
      * bigcode sdpa support
      
      * fixes
      
      * gpt-bigcode support, require torch>=2.1.1
      
      * add falcon support
      
      * fix conflicts falcon
      
      * style
      
      * fix attention_mask definition
      
      * remove output_attentions from attnmaskconverter
      
      * support whisper without removing any Copied from statement
      
      * fix mbart default to eager renaming
      
      * fix typo in falcon
      
      * fix is_causal in SDPA
      
      * check is_flash_attn_2_available in the models init as well in case the model is not initialized through from_pretrained
      
      * add warnings when falling back on the manual implementation
      
      * precise doc
      
      * wip replace _flash_attn_enabled by config.attn_implementation
      
      * fix typo
      
      * add tests
      
      * style
      
      * add a copy.deepcopy on the config in from_pretrained, as we do not want to modify it inplace
      
      * obey to config.attn_implementation if a config is passed in from_pretrained
      
      * fix is_torch_sdpa_available when torch is not installed
      
      * remove dead code
      
      * Update src/transformers/modeling_attn_mask_utils.py
      Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>
      
      * Update src/transformers/modeling_attn_mask_utils.py
      Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>
      
      * Update src/transformers/modeling_attn_mask_utils.py
      Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>
      
      * Update src/transformers/modeling_attn_mask_utils.py
      Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>
      
      * Update src/transformers/modeling_attn_mask_utils.py
      Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>
      
      * Update src/transformers/models/bart/modeling_bart.py
      Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>
      
      * remove duplicate pretraining_tp code
      
      * add dropout in llama
      
      * precise comment on attn_mask
      
      * add fmt: off for _unmask_unattended docstring
      
      * precise num_masks comment
      
      * nuke pretraining_tp in LlamaSDPAAttention following Arthur's suggestion
      
      * cleanup modeling_utils
      
      * backward compatibility
      
      * fix style as requested
      
      * style
      
      * improve documentation
      
      * test pass
      
      * style
      
      * add _unmask_unattended tests
      
      * skip meaningless tests for idefics
      
      * hard_check SDPA requirements when specifically requested
      
      * standardize the use if XXX_ATTENTION_CLASSES
      
      * fix SDPA bug with mem-efficient backend on CUDA when using fp32
      
      * fix test
      
      * rely on SDPA is_causal parameter to handle the causal mask in some cases
      
      * fix FALCON_ATTENTION_CLASSES
      
      * remove _flash_attn_2_enabled occurences
      
      * fix test
      
      * add OPT to the list of supported flash models
      
      * improve test
      
      * properly test on different SDPA backends, on different dtypes & properly handle separately the pad tokens in the test
      
      * remove remaining _flash_attn_2_enabled occurence
      
      * Update src/transformers/modeling_utils.py
      Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>
      
      * Update src/transformers/modeling_utils.py
      Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>
      
      * Update src/transformers/modeling_utils.py
      Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>
      
      * Update src/transformers/modeling_attn_mask_utils.py
      Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>
      
      * Update docs/source/en/perf_infer_gpu_one.md
      Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>
      
      * remove use_attn_implementation
      
      * fix docstring & slight bug
      
      * make attn_implementation internal (_attn_implementation)
      
      * typos
      
      * fix tests
      
      * deprecate use_flash_attention_2=True
      
      * fix test
      
      * add back llama that was removed by mistake
      
      * fix tests
      
      * remove _flash_attn_2_enabled occurences bis
      
      * add check & test that passed attn_implementation is valid
      
      * fix falcon torchscript export
      
      * fix device of mask in tests
      
      * add tip about torch.jit.trace and move bt doc below sdpa
      
      * fix parameterized.expand order
      
      * move tests from test_modeling_attn_mask_utils to test_modeling_utils as a relevant test class is already there
      
      * update sdpaattention class with the new cache
      
      * Update src/transformers/configuration_utils.py
      Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>
      
      * Update src/transformers/models/bark/modeling_bark.py
      
      * address review comments
      
      * WIP torch.jit.trace fix. left: test both eager & sdpa
      
      * add test for torch.jit.trace for both eager/sdpa
      
      * fix falcon with torch==2.0 that needs to use sdpa
      
      * fix doc
      
      * hopefully last fix
      
      * fix key_value_length that has no default now in mask converter
      
      * is it flacky?
      
      * fix speculative decoding bug
      
      * tests do pass
      
      * fix following #27907
      
      ---------
      Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>
      80377eb0
    • Aaron Jimenez's avatar
      [Doc] Spanish translation of pad_truncation.md (#27890) · d6c3a3f1
      Aaron Jimenez authored
      * Add pad_truncation to es/_toctree.yml
      
      * Add pad_truncation.md to es/
      
      * Translated first two paragraph
      
      * Translated paddig argument section
      
      * Translated truncation argument section
      
      * Translated final paragraphs
      
      * Translated table
      
      * Fixed typo in the table of en/pad_truncation.md
      
      * Run make style | Fix a word
      
      * Add Padding (relleno) y el Truncation (truncamiento) in the final paragraphs
      
      * Fix relleno and truncamiento words
      d6c3a3f1
    • Tom Aarsen's avatar
      Generate: New `Cache` abstraction and Attention Sinks support (#26681) · 633215ba
      Tom Aarsen authored
      * Draft version of new KV Caching
      
      This should allow Attention Sinks (https://github.com/tomaarsen/attention_sinks)
      / StreamingLLM (https://arxiv.org/abs/2309.17453) to be easily implemented
      in a third-party or in transformers directly
      
      * Address numerous PR suggestions
      
      1. Move layer_idx from cache to ...Attention. Removes confusing set_layer_idx magic.
      2. Always convert past_key_values to Cache instance at the start of ...Attention, removes all other isinstance calls.
      3. Remove __bool__ and __getitem__ magic as they're confusing.
      4. past_key_values.update(key, value, idx) now returns key, value.
      5. Add use_legacy_cache flag, defaults to None, i.e. Falsey. This breaks generate for now, until 1) the cache is used is generate() or 2) use_legacy_cache is defaulted to True in generate() until we change it in another PR.
      6. Separate key_cache and value_cache.
      
      Some work is still needed to see if the SinkCache can conveniently be implemented with just one update method.
      
      * Implement the SinkCache through backward+forward rotations
      
      * Integrate (Sink)Cache with Llama FA2
      
      * Set use_legacy_cache=True as default, allows for test passes
      
      * Move from/to_legacy_cache to ...Model class
      
      * Undo unnecessary newline change
      
      * Remove copy utility from deprecated OpenLlama
      
      * Match import style
      
      * manual rebase with main
      
      * Cache class working with generate (#1)
      
      * Draft version of new KV Caching
      
      This should allow Attention Sinks (https://github.com/tomaarsen/attention_sinks)
      / StreamingLLM (https://arxiv.org/abs/2309.17453
      
      ) to be easily implemented
      in a third-party or in transformers directly
      
      * Address numerous PR suggestions
      
      1. Move layer_idx from cache to ...Attention. Removes confusing set_layer_idx magic.
      2. Always convert past_key_values to Cache instance at the start of ...Attention, removes all other isinstance calls.
      3. Remove __bool__ and __getitem__ magic as they're confusing.
      4. past_key_values.update(key, value, idx) now returns key, value.
      5. Add use_legacy_cache flag, defaults to None, i.e. Falsey. This breaks generate for now, until 1) the cache is used is generate() or 2) use_legacy_cache is defaulted to True in generate() until we change it in another PR.
      6. Separate key_cache and value_cache.
      
      Some work is still needed to see if the SinkCache can conveniently be implemented with just one update method.
      
      * Integrate (Sink)Cache with Llama FA2
      
      * Move from/to_legacy_cache to ...Model class
      
      * Undo unnecessary newline change
      
      * Match import style
      
      * working generate
      
      * Add tests; Simplify code; Apply changes to Mistral and Persimmon
      
      * fix rebase mess
      
      * a few more manual fixes
      
      * last manual fix
      
      * propagate changes to phi
      
      * upgrade test
      
      * add use_legacy_cache docstring; beef up tests
      
      * reintroduce unwanted deletes
      
      ---------
      Co-authored-by: default avatarTom Aarsen <Cubiegamedev@gmail.com>
      
      * move import
      
      * add default to model_kwargs.get('use_legacy_cache')
      
      * correct failing test
      
      * Apply suggestions from code review
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * apply PR suggestions
      
      * fix failing test
      
      * Apply suggestions from code review
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      Co-authored-by: default avatarTom Aarsen <37621491+tomaarsen@users.noreply.github.com>
      
      * PR comments
      
      * tmp commit
      
      * add docstrings
      
      * more tests, more docstrings, add to docs
      
      * derp
      
      * tmp commit
      
      * tmp dbg
      
      * more dbg
      
      * fix beam search bug
      
      * cache can be a list of tuples in some models
      
      * fix group beam search
      
      * all but sinkcache integration tests
      
      * fix sink cache and add hard integration test
      
      * now also compatible with input_embeds input
      
      * PR comments
      
      * add Cache support to Phi+FA2
      
      * make fixup
      
      ---------
      Co-authored-by: default avatarJoao Gante <joao@huggingface.co>
      Co-authored-by: default avatarJoao Gante <joaofranciscocardosogante@gmail.com>
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      633215ba
  11. 07 Dec, 2023 8 commits
    • Rockerz's avatar
      Translate `model_doc` files from `clip` to `cpm` to JP (#27774) · 0ea42ef0
      Rockerz authored
      
      
      * Add models
      
      * Add more models
      
      * Update docs/source/ja/model_doc/convnextv2.md
      Co-authored-by: default avatarSteven Liu <59462357+stevhliu@users.noreply.github.com>
      
      * Update docs/source/ja/model_doc/convbert.md
      Co-authored-by: default avatarSteven Liu <59462357+stevhliu@users.noreply.github.com>
      
      * Update docs/source/ja/model_doc/codegen.md
      Co-authored-by: default avatarSteven Liu <59462357+stevhliu@users.noreply.github.com>
      
      * Update translation errors and author names
      
      * link update
      
      ---------
      Co-authored-by: default avatarSteven Liu <59462357+stevhliu@users.noreply.github.com>
      0ea42ef0
    • Dina Suehiro Jones's avatar
      Updates the distributed CPU training documentation to add instructions for... · 79b79ae2
      Dina Suehiro Jones authored
      Updates the distributed CPU training documentation to add instructions for running on a Kubernetes cluster (#27780)
      
      * Updates the Distributed CPU documentation to add a Kubernetes example
      
      * Small edits
      
      * Fixing link
      
      * Adding missing new lines
      
      * Minor edits
      
      * Update to include Dockerfile snippet
      
      * Add comment about tuning env var
      
      * Updates based on review comments
      79b79ae2
    • Steven Liu's avatar
      [docs] Custom semantic segmentation dataset (#27859) · f7595760
      Steven Liu authored
      * custom dataset
      
      * fix link
      
      * feedback
      f7595760
    • Joao Gante's avatar
    • Younes Belkada's avatar
      [`Llava`]聽Add Llava to transformers (#27662) · 44b5506d
      Younes Belkada authored
      * add model like
      
      * logits match
      
      * minor fixes
      
      * fixes
      
      * up
      
      * up
      
      * add todo
      
      * llava processor
      
      * keep the processor simple
      
      * add conversion script
      
      * fixup
      
      * fix copies
      
      * up
      
      * add to index
      
      * fix config + logits
      
      * fix
      
      * refactor
      
      * more refactor
      
      * more refactor
      
      * fix copies
      
      * add authors
      
      * v1 tests
      
      * add `LlavaProcessor` in init
      
      * remove unneeded import
      
      * up
      
      * up
      
      * docs
      
      * up
      
      * fix CI
      
      * fix CI
      
      * add attention  mask in test
      
      * make fixup
      
      * remove the vision model
      
      * that' s the dirty way to do it
      
      * nits
      
      * nits
      
      * updates
      
      * add more tests
      
      * add input tests
      
      * fixup
      
      * more styling
      
      * nits
      
      * updates amd cleanup
      
      * fixup the generation expected results
      
      * fix the testing script
      
      * some cleanup and simplification which does not work yet but almost there!
      
      * make correct dispatch operations
      
      * vectorize works for batch of images and text
      
      * last todos
      
      * nits
      
      * update test and modeling code
      
      * remove useless function for now
      
      * fix few issues
      
      * fix generation
      
      * some nits
      
      * add bakllava
      
      * nits
      
      * remove duplicated code
      
      * finis merge
      
      * cleanup
      
      * missed this line
      
      * fill the todos
      
      * add left padding offset
      
      * add left and rignt padding logic
      
      * bool to properly index
      
      * make sure
      
      * more cleanups
      
      * batch is fixed 馃槈
      
      
      
      * add correct device for tensor creation
      
      * fix some dtype missmatch
      
      * ruff
      
      * update conversion script
      
      * Update src/transformers/__init__.py
      
      * fa 2 support + fix conversion script
      
      * more
      
      * correct reshaping
      
      * fix test dict
      
      * fix copies by ignoring
      
      * fix nit
      
      * skip clip vision model
      
      * fixup
      
      * fixup
      
      * LlavaForVisionText2Text -> LlavaForCausalLM
      
      * update
      
      * fix
      
      * raise correct errors
      
      * fix
      
      * docs
      
      * nuke for now
      
      * nits here and there
      
      * fixup
      
      * fix remaining tests
      
      * update LlavaForConditionalGeneration instead of CausalLM
      
      * fixups
      
      * pipeline support
      
      * slow and piepline tests
      
      * supports batch
      
      * nits
      
      * cleanup
      
      * fix first integration tests
      
      * add pad token where needed
      
      * correct etsts
      
      * fixups
      
      * update pipeline testr
      
      * fix quality
      
      * nits
      
      * revert unneeded change
      
      * nit
      
      * use BatchFeature
      
      * from ...feature_extraction_utils import BatchFeature
      
      * nits
      
      * nits
      
      * properly update
      
      * more f*** nits
      
      * fix copies
      
      * comment
      
      * keep slow test slow
      
      * Update src/transformers/models/llava/processing_llava.py
      Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>
      
      * add piepline example
      
      * add pixel values in docstrign
      
      * update pr doctest
      
      * fix
      
      * fix slow tests
      
      * remove hack
      
      * fixup
      
      * small note
      
      * forward contrib credits from PR25789
      
      * forward contrib credits from original implementation and work
      
      * add arthur
      
      * Update src/transformers/models/llava/processing_llava.py
      Co-authored-by: default avatarLysandre Debut <hi@lysand.re>
      
      * update docstring
      
      * nit
      
      * move to not doctested because of timeout issues
      
      * fixup
      
      * add description
      
      * more
      
      * fix-copies
      
      * fix docs
      
      * add beam search
      
      * add more comments
      
      * add typehints on processor
      
      * add speedup plot
      
      * update slow tests and docs
      
      * push test
      
      * push batched test
      
      * fix batched generation with different number of images
      
      * remove benchmark due to a bug
      
      * fix test
      
      * fix copies
      
      * add gcolab demo
      
      ---------
      Co-authored-by: default avatarArthur Zucker <arthur.zucker@gmail.com>
      Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>
      Co-authored-by: default avatarshauray8 <shauray8@users.noreply.github.com>
      Co-authored-by: default avatarhaotian-liu <haotian-liu@users.noreply.github.com>
      Co-authored-by: default avatarLysandre Debut <hi@lysand.re>
      44b5506d
    • Susnato Dhar's avatar
      [`FA-2`] Add Flash Attention to `Phi` (#27661) · f84d85ba
      Susnato Dhar authored
      * add FA and modify doc file
      
      * test_flash_attn_2_generate_padding_right test overwritten
      
      * comment
      
      * modify persimmon modeling file
      
      * added speedup graph
      
      * more changes
      f84d85ba
    • Nolwenn Bernard's avatar
      [i18n-fr] Translate autoclass tutorial to French (#27659) · 06f56168
      Nolwenn Bernard authored
      * Translation of autoclass tutorial
      
      * Update totree to keep only tutorial section
      
      * Translate title toctree
      
      * Fix typos
      
      * Update review comments
      06f56168
    • Alex McKinney's avatar
      Add Llama Flax Implementation (#24587) · 75336c17
      Alex McKinney authored
      * Copies `modeling_flax_gpt_neo.py` to start
      
      * MLP Block. WIP Attention and Block
      
      * Adds Flax implementation of `LlamaMLP`
      Validated with in-file test.
      Some slight numeric differences, but assuming it isn't an issue
      
      * Adds `FlaxLlamaRMSNorm` layer
      `flax.linen` includes `RMSNorm` layer but not necessarily in all
      versions. Hence, we add in-file.
      
      * Adds FlaxLlamaAttention
      Copied from GPT-J as it has efficient caching implementation as well as
      rotary embeddings.
      Notice numerically different, but not by a huge amount. Needs
      investigating
      
      * Adds `FlaxLlamaDecoderLayer`
      numerically inaccurate, debugging..
      
      * debugging rotary mismatch
      gptj uses interleaved whilst llama uses contiguous
      i think they match now but still final result is wrong.
      maybe drop back to just debugging attention layer?
      
      * fixes bug with decoder layer
      still somewhat numerically inaccurate, but close enough for now
      
      * adds markers for what to implement next
      the structure here diverges a lot from the PT version.
      not a big fan of it, but just get something working for now
      
      * implements `FlaxLlamaBlockCollection`]
      tolerance must be higher than expected, kinda disconcerting
      
      * Adds `FlaxLlamaModule`
      equivalent PyTorch model is `LlamaModel`
      yay! a language model馃
      
      * adds `FlaxLlamaForCausalLMModule`
      equivalent to `LlamaForCausalLM`
      still missing returning dict or tuple, will add later
      
      * start porting pretrained wrappers
      realised it probably needs return dict as a prereq
      
      * cleanup, quality, style
      
      * readds `return_dict` and model output named tuples
      
      * (tentatively) pretrained wrappers work 馃敟
      
      * fixes numerical mismatch in `FlaxLlamaRMSNorm`
      seems `jax.lax.rsqrt` does not match `torch.sqrt`.
      manually computing `1 / jax.numpy.sqrt` results in matching values.
      
      * [WIP] debugging numerics
      
      * numerical match
      I think issue was accidental change of backend. forcing CPU fixes test.
      We expect some mismatch on GPU.
      
      * adds in model and integration tests for Flax Llama
      summary of failing:
      - mul invalid combination of dimensions
      - one numerical mismatch
      - bf16 conversion (maybe my local backend issue)
      - params are not FrozenDict
      
      * adds missing TYPE_CHECKING import and `make fixup`
      
      * adds back missing docstrings
      needs review on quality of docstrings, not sure what is required.
      Furthermore, need to check if `CHECKPOINT_FOR_DOC` is valid. See TODO
      
      * commenting out equivalence test as can just use common
      
      * debugging
      
      * Fixes bug where mask and pos_ids were swapped in pretrained models
      This results in all tests passing now 馃敟
      
      
      
      * cleanup of modeling file
      
      * cleanup of test file
      
      * Resolving simpler review comments
      
      * addresses more minor review comments
      
      * fixing introduced pytest errors from review
      
      * wip additional slow tests
      
      * wip tests
      need to grab a GPU machine to get real logits for comparison
      otherwise, slow tests should be okay
      
      * `make quality`, `make style`
      
      * adds slow integration tests
      - checking logits
      - checking hidden states
      - checking generation outputs
      
      * `make fix-copies`
      
      * fix mangled function following `make fix-copies`
      
      * adds missing type checking imports
      
      * fixes missing parameter checkpoint warning
      
      * more finegrained 'Copied from' tags
      avoids issue of overwriting `LLAMA_INPUTS_DOCSTRING`
      
      * swaps import guards
      ??? how did these get swapped initially?
      
      * removing `inv_freq` again as pytorch version has now removed
      
      * attempting to get CI to pass
      
      * adds doc entries for llama flax models
      
      * fixes typo in __init__.py imports
      
      * adds back special equivalence tests
      these come from the gpt neo flax tests. there is special behaviour for these models that needs to override the common version
      
      * overrides tests with dummy to see if CI passes
      need to fill in these tests later
      
      * adds my contribution to docs
      
      * `make style; make quality`
      
      * replaces random masking with fixed to work with flax version
      
      * `make quality; make style`
      
      * Update src/transformers/models/llama/modeling_flax_llama.py
      Co-authored-by: default avatarSanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
      
      * Update src/transformers/models/llama/modeling_flax_llama.py
      Co-authored-by: default avatarSanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
      
      * Update src/transformers/models/llama/modeling_flax_llama.py
      Co-authored-by: default avatarSanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
      
      * Update src/transformers/models/llama/modeling_flax_llama.py
      Co-authored-by: default avatarSanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
      
      * Update src/transformers/models/llama/modeling_flax_llama.py
      Co-authored-by: default avatarSanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
      
      * Update src/transformers/models/llama/modeling_flax_llama.py
      Co-authored-by: default avatarSanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
      
      * updates `x`->`tensor` in `rotate_half`
      
      * addresses smaller review comments
      
      * Update docs/source/en/model_doc/llama.md
      Co-authored-by: default avatarSanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
      
      * adds integration test class
      
      * adds `dtype` to rotary embedding to cast outputs
      
      * adds type to flax llama rotary layer
      
      * `make style`
      
      * `make fix-copies`
      
      * Apply suggestions from code review
      Co-authored-by: default avatarSanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
      
      * applies suggestions from review
      
      * Update modeling_flax_llama.py
      
      * `make fix-copies`
      
      * Update tests/models/llama/test_modeling_llama.py
      Co-authored-by: default avatarSanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
      
      * Update src/transformers/models/llama/modeling_flax_llama.py
      Co-authored-by: default avatarSanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
      
      * fixes shape mismatch in FlaxLlamaMLP
      
      * applies some suggestions from reviews
      
      * casts attn output logits to f32 regardless of dtype
      
      * adds attn bias using `LlamaConfig.attention_bias`
      
      * adds Copied From comments to Flax Llama test
      
      * mistral and persimmon test change -copy from llama
      
      * updates docs index
      
      * removes Copied from in tests
      
      it was preventing `make fix-copies` from succeeding
      
      * quality and style
      
      * ignores FlaxLlama input docstring
      
      * adds revision to `_CHECKPOINT_FOR_DOC`
      
      * repo consistency and quality
      
      * removes unused import
      
      * removes copied from from Phi test
      
      now diverges from llama tests following FlaxLlama changes
      
      * adds `_REAL_CHECKPOINT_FOR_DOC`
      
      * removes refs from pr tests
      
      * reformat to make ruff happy
      
      ---------
      Co-authored-by: default avatarSanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
      75336c17
  12. 06 Dec, 2023 2 commits
  13. 05 Dec, 2023 2 commits