- 08 Jun, 2020 7 commits
-
-
Sylvain Gugger authored
* Clean documentation
-
Lysandre authored
-
Julien Plu authored
* Align checkpoint dir with the PT trainer * Use args for max to keep checkpoints
-
Patrick von Platen authored
* fix flaky beam search * fix typo
-
Patrick von Platen authored
-
Sylvain Gugger authored
* Expose classes used in documentation * Format code
-
daniel-shan authored
Co-authored-by:Daniel Shan <daniel.shan@workday.com>
-
- 07 Jun, 2020 1 commit
-
-
Bram Vanroy authored
-
- 06 Jun, 2020 3 commits
-
-
Sam Shleifer authored
-
-
Sylvain Gugger authored
-
- 05 Jun, 2020 13 commits
-
-
Sylvain Gugger authored
* Add badges for models and docs
-
Sam Shleifer authored
-
Sam Shleifer authored
-
Patrick von Platen authored
* automatically set decoder config to decoder * add more tests
-
Sylvain Gugger authored
-
Sylvain Gugger authored
-
Sylvain Gugger authored
* Fix argument label * Fix test
-
Sam Shleifer authored
-
Sylvain Gugger authored
-
Sylvain Gugger authored
* Add model summary * Add link to pretrained models
-
Lysandre Debut authored
* No silent error when d_head already in the configuration * Update src/transformers/configuration_xlnet.py Co-authored-by:
Julien Chaumond <chaumond@gmail.com> Co-authored-by:
Julien Chaumond <chaumond@gmail.com>
-
Julien Chaumond authored
-
Sylvain Gugger authored
-
- 04 Jun, 2020 14 commits
-
-
Julien Plu authored
* Better None gradients handling * Apply Style * Apply Style * Create a loss class per task to compute its respective loss * Add loss classes to the ALBERT TF models * Add loss classes to the BERT TF models * Add question answering and multiple choice to TF Camembert * Remove prints * Add multiple choice model to TF DistilBERT + loss computation * Add question answering model to TF Electra + loss computation * Add token classification, question answering and multiple choice models to TF Flaubert * Add multiple choice model to TF Roberta + loss computation * Add multiple choice model to TF XLM + loss computation * Add multiple choice and question answering models to TF XLM-Roberta * Add multiple choice model to TF XLNet + loss computation * Remove unused parameters * Add task loss classes * Reorder TF imports + add new model classes * Add new model classes * Bugfix in TF T5 model * Bugfix for TF T5 tests * Bugfix in TF T5 model * Fix TF T5 model tests * Fix T5 tests + some renaming * Fix inheritance issue in the AutoX tests * Add tests for TF Flaubert and TF XLM Roberta * Add tests for TF Flaubert and TF XLM Roberta * Remove unused piece of code in the TF trainer * bugfix and remove unused code * Bugfix for TF 2.2 * Apply Style * Divide TFSequenceClassificationAndMultipleChoiceLoss into their two respective name * Apply style * Mirror the PT Trainer in the TF one: fp16, optimizers and tb_writer as class parameter and better dataset handling * Fix TF optimizations tests and apply style * Remove useless parameter * Bugfix and apply style * Fix TF Trainer prediction * Now the TF models return the loss such as their PyTorch couterparts * Apply Style * Ignore some tests output * Take into account the SQuAD cls_index, p_mask and is_impossible parameters for the QuestionAnswering task models. * Fix names for SQuAD data * Apply Style * Fix conflicts with 2.11 release * Fix conflicts with 2.11 * Fix wrongname * Add better documentation on the new create_optimizer function * Fix isort * logging_dir: use same default as PyTorch Co-authored-by:Julien Chaumond <chaumond@gmail.com>
-
-
Stefan Schweter authored
* ner: add preprocessing script for examples that splits longer sentences * ner: example shell scripts use local preprocessing now * ner: add new example section for WNUT’17 NER task. Remove old English CoNLL-03 results * ner: satisfy black and isort
-
Setu Shah authored
-
prajjwal1 authored
-
Sylvain Gugger authored
-
Manuel Romero authored
-
Oren Amsalem authored
-
Suraj Parmar authored
* Model cad for SanBERTa Model Card for RoBERTa trained on Sanskrit * Model card for SanBERTa model card for RoBERTa trained on Sanskrit
-
Sylvain Gugger authored
-
Jason Phang authored
-
Lysandre Debut authored
* Codecov setup * Understanding codecov
-
Sam Shleifer authored
-
Funtowicz Morgan authored
* Refactor tensor creation in tokenizers. * Make sure to convert string to TensorType * Refactor convert_to_tensors_ * Introduce numpy tensor creation * Format * Add unittest for TensorType creation from str * sorting imports * Added unittests for numpy tensor conversion. * Do not use in-place version for squeeze as numpy doesn't provide such feature. * Added extra parameter prepend_batch_axis: bool on prepare_for_model. * Ensure test_np_encode_plus_sent_to_model is not executed if encoder/decoder model. * style. * numpy tests require_torch for now while flax not merged. * Hopefully will make flake8 happy. * One more time
🎶
-
- 03 Jun, 2020 2 commits
-
-
Funtowicz Morgan authored
* Ensure tokens in never_split are not splitted when using basic tokenizer before wordpiece. * never_split only use membership attempt to use a set() which is 10x faster for this operation. * Use union to concatenate two sets. * Updated docstring for never_split parameter. * Avoid set.union() if never_split is None * Added comments. * Correct docstring format.
-
Lysandre Debut authored
-