- 07 Dec, 2020 1 commit
-
-
Sylvain Gugger authored
* Add copyright everywhere missing * Style
-
- 16 Nov, 2020 1 commit
-
-
Sylvain Gugger authored
* Use the CI to identify failing tests * Remove from all examples and tests * More default switch * Fixes * More test fixes * More fixes * Last fixes hopefully * Use the CI to identify failing tests * Remove from all examples and tests * More default switch * Fixes * More test fixes * More fixes * Last fixes hopefully * Run on the real suite * Fix slow tests
-
- 30 Oct, 2020 1 commit
-
-
Lysandre Debut authored
* Test TF GPU CI * Change cache * Fix missing torch requirement * Fix some model tests Style * LXMERT * MobileBERT * Longformer skip test * XLNet * The rest of the tests * RAG goes OOM in multi gpu setup * YAML test files * Last fixes * Skip doctests * Fill mask tests * Yaml files * Last test fix * Style * Update cache * Change ONNX tests to slow + use tiny model
-
- 18 Oct, 2020 1 commit
-
-
Thomas Wolf authored
* splitting fast and slow tokenizers [WIP] * [WIP] splitting sentencepiece and tokenizers dependencies * update dummy objects * add name_or_path to models and tokenizers * prefix added to file names * prefix * styling + quality * spliting all the tokenizer files - sorting sentencepiece based ones * update tokenizer version up to 0.9.0 * remove hard dependency on sentencepiece
馃帀 * and removed hard dependency on tokenizers馃帀 * update conversion script * update missing models * fixing tests * move test_tokenization_fast to main tokenization tests - fix bugs * bump up tokenizers * fix bert_generation * update ad fix several tokenizers * keep sentencepiece in deps for now * fix funnel and deberta tests * fix fsmt * fix marian tests * fix layoutlm * fix squeezebert and gpt2 * fix T5 tokenization * fix xlnet tests * style * fix mbart * bump up tokenizers to 0.9.2 * fix model tests * fix tf models * fix seq2seq examples * fix tests without sentencepiece * fix slow => fast conversion without sentencepiece * update auto and bert generation tests * fix mbart tests * fix auto and common test without tokenizers * fix tests without tokenizers * clean up tests lighten up when tokenizers + sentencepiece are both off * style quality and tests fixing * add sentencepiece to doc/examples reqs * leave sentencepiece on for now * style quality split hebert and fix pegasus * WIP Herbert fast * add sample_text_no_unicode and fix hebert tokenization * skip FSMT example test for now * fix style * fix fsmt in example tests * update following Lysandre and Sylvain's comments * Update src/transformers/testing_utils.py Co-authored-by:Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * Update src/transformers/testing_utils.py Co-authored-by:
Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * Update src/transformers/tokenization_utils_base.py Co-authored-by:
Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * Update src/transformers/tokenization_utils_base.py Co-authored-by:
Sylvain Gugger <35901082+sgugger@users.noreply.github.com> Co-authored-by:
Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
-
- 24 Aug, 2020 1 commit
-
-
Sylvain Gugger authored
* Run new isort * More changes * Update CI, CONTRIBUTING and benchmarks
-
- 05 Aug, 2020 1 commit
-
-
Sylvain Gugger authored
* TF outputs and test on BERT * Albert to DistilBert * All remaining TF models except T5 * Documentation * One file forgotten * TF outputs and test on BERT * Albert to DistilBert * All remaining TF models except T5 * Documentation * One file forgotten * Add new models and fix issues * Quality improvements * Add T5 * A bit of cleanup * Fix for slow tests * Style
-
- 01 Jul, 2020 1 commit
-
-
Sam Shleifer authored
-
- 04 Jun, 2020 1 commit
-
-
Julien Plu authored
* Better None gradients handling * Apply Style * Apply Style * Create a loss class per task to compute its respective loss * Add loss classes to the ALBERT TF models * Add loss classes to the BERT TF models * Add question answering and multiple choice to TF Camembert * Remove prints * Add multiple choice model to TF DistilBERT + loss computation * Add question answering model to TF Electra + loss computation * Add token classification, question answering and multiple choice models to TF Flaubert * Add multiple choice model to TF Roberta + loss computation * Add multiple choice model to TF XLM + loss computation * Add multiple choice and question answering models to TF XLM-Roberta * Add multiple choice model to TF XLNet + loss computation * Remove unused parameters * Add task loss classes * Reorder TF imports + add new model classes * Add new model classes * Bugfix in TF T5 model * Bugfix for TF T5 tests * Bugfix in TF T5 model * Fix TF T5 model tests * Fix T5 tests + some renaming * Fix inheritance issue in the AutoX tests * Add tests for TF Flaubert and TF XLM Roberta * Add tests for TF Flaubert and TF XLM Roberta * Remove unused piece of code in the TF trainer * bugfix and remove unused code * Bugfix for TF 2.2 * Apply Style * Divide TFSequenceClassificationAndMultipleChoiceLoss into their two respective name * Apply style * Mirror the PT Trainer in the TF one: fp16, optimizers and tb_writer as class parameter and better dataset handling * Fix TF optimizations tests and apply style * Remove useless parameter * Bugfix and apply style * Fix TF Trainer prediction * Now the TF models return the loss such as their PyTorch couterparts * Apply Style * Ignore some tests output * Take into account the SQuAD cls_index, p_mask and is_impossible parameters for the QuestionAnswering task models. * Fix names for SQuAD data * Apply Style * Fix conflicts with 2.11 release * Fix conflicts with 2.11 * Fix wrongname * Add better documentation on the new create_optimizer function * Fix isort * logging_dir: use same default as PyTorch Co-authored-by:Julien Chaumond <chaumond@gmail.com>
-
- 24 Mar, 2020 1 commit
-
-
Patrick von Platen authored
* add integration tests for camembert * use jplu/tf-camembert fro the moment * make style
-