Unverified Commit febe42b5 authored by Zachary Mueller's avatar Zachary Mueller Committed by GitHub
Browse files

Update no_trainer scripts with new Accelerate functionalities (#16617)



Adds logging and save/loading to the Accelerate scripts
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>
parent 10c15d2d
......@@ -185,6 +185,23 @@ def parse_args():
"--hub_model_id", type=str, help="The name of the repository to keep in sync with the local `output_dir`."
)
parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--checkpointing_steps",
type=str,
default=None,
help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.",
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help="If the training should continue from a checkpoint folder.",
)
parser.add_argument(
"--with_tracking",
required=False,
help="Whether to load in all available experiment trackers from the environment and use them for logging.",
)
args = parser.parse_args()
# Sanity checks
......@@ -208,7 +225,8 @@ def main():
args = parse_args()
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
accelerator = Accelerator()
# If we're using tracking, we also need to initialize it here and it will pick up all supported trackers in the environment
accelerator = Accelerator(log_with="all") if args.with_tracking else Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
......@@ -427,18 +445,10 @@ def main():
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader
)
# On TPU, the tie weights in our model have been disconnected, so we need to restore the ties.
if accelerator.distributed_type == DistributedType.TPU:
model.tie_weights()
# Note -> the training dataloader needs to be prepared before we grab his length below (cause its length will be
# shorter in multiprocess)
# Scheduler and math around the number of training steps.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
......@@ -453,6 +463,23 @@ def main():
num_training_steps=args.max_train_steps,
)
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
)
# Figure out how many steps we should save the Accelerator states
if hasattr(args.checkpointing_steps, "isdigit"):
checkpointing_steps = args.checkpointing_steps
if args.checkpointing_steps.isdigit():
checkpointing_steps = int(args.checkpointing_steps)
else:
checkpointing_steps = None
# We need to initialize the trackers we use, and also store our configuration
if args.with_tracking:
accelerator.init_trackers("clm_no_trainer", args)
# Train!
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
......@@ -467,11 +494,38 @@ def main():
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
completed_steps = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
accelerator.print(f"Resumed from checkpoint: {args.resume_from_checkpoint}")
accelerator.load_state(args.resume_from_checkpoint)
resume_step = None
path = args.resume_from_checkpoint
else:
# Get the most recent checkpoint
dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()]
dirs.sort(key=os.path.getctime)
path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last
if "epoch" in path:
args.num_train_epochs -= int(path.replace("epoch_", ""))
else:
resume_step = int(path.replace("step_", ""))
args.num_train_epochs -= resume_step // len(train_dataloader)
resume_step = (args.num_train_epochs * len(train_dataloader)) - resume_step
for epoch in range(args.num_train_epochs):
model.train()
if args.with_tracking:
total_loss = 0
for step, batch in enumerate(train_dataloader):
# We need to skip steps until we reach the resumed step
if args.resume_from_checkpoint and epoch == 0 and step < resume_step:
continue
outputs = model(**batch)
loss = outputs.loss
# We keep track of the loss at each epoch
if args.with_tracking:
total_loss += loss.detach().float()
loss = loss / args.gradient_accumulation_steps
accelerator.backward(loss)
if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
......@@ -481,6 +535,10 @@ def main():
progress_bar.update(1)
completed_steps += 1
if isinstance(checkpointing_steps, int):
if completed_steps % checkpointing_steps == 0:
accelerator.save_state(f"step_{completed_steps}")
if completed_steps >= args.max_train_steps:
break
......@@ -502,6 +560,16 @@ def main():
logger.info(f"epoch {epoch}: perplexity: {perplexity}")
if args.with_tracking:
accelerator.log(
{
"perplexity": perplexity,
"train_loss": total_loss,
"epoch": epoch,
},
step=completed_steps,
)
if args.push_to_hub and epoch < args.num_train_epochs - 1:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
......@@ -512,6 +580,9 @@ def main():
commit_message=f"Training in progress epoch {epoch}", blocking=False, auto_lfs_prune=True
)
if args.checkpointing_steps == "epoch":
accelerator.save_state(f"epoch_{epoch}")
if args.output_dir is not None:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
......
......@@ -194,6 +194,23 @@ def parse_args():
"--hub_model_id", type=str, help="The name of the repository to keep in sync with the local `output_dir`."
)
parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--checkpointing_steps",
type=str,
default=None,
help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.",
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help="If the training should continue from a checkpoint folder.",
)
parser.add_argument(
"--with_tracking",
required=False,
help="Whether to load in all available experiment trackers from the environment and use them for logging.",
)
args = parser.parse_args()
# Sanity checks
......@@ -219,7 +236,8 @@ def main():
args = parse_args()
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
accelerator = Accelerator()
# If we're using tracking, we also need to initialize it here and it will pick up all supported trackers in the environment
accelerator = Accelerator(log_with="all") if args.with_tracking else Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
......@@ -468,11 +486,6 @@ def main():
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader
)
# On TPU, the tie weights in our model have been disconnected, so we need to restore the ties.
if accelerator.distributed_type == DistributedType.TPU:
model.tie_weights()
......@@ -494,6 +507,23 @@ def main():
num_training_steps=args.max_train_steps,
)
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
)
# Figure out how many steps we should save the Accelerator states
if hasattr(args.checkpointing_steps, "isdigit"):
checkpointing_steps = args.checkpointing_steps
if args.checkpointing_steps.isdigit():
checkpointing_steps = int(args.checkpointing_steps)
else:
checkpointing_steps = None
# We need to initialize the trackers we use, and also store our configuration
if args.with_tracking:
accelerator.init_trackers("clm_no_trainer", args)
# Train!
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
......@@ -508,11 +538,38 @@ def main():
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
completed_steps = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
accelerator.print(f"Resumed from checkpoint: {args.resume_from_checkpoint}")
accelerator.load_state(args.resume_from_checkpoint)
resume_step = None
path = args.resume_from_checkpoint
else:
# Get the most recent checkpoint
dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()]
dirs.sort(key=os.path.getctime)
path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last
if "epoch" in path:
args.num_train_epochs -= int(path.replace("epoch_", ""))
else:
resume_step = int(path.replace("step_", ""))
args.num_train_epochs -= resume_step // len(train_dataloader)
resume_step = (args.num_train_epochs * len(train_dataloader)) - resume_step
for epoch in range(args.num_train_epochs):
model.train()
if args.with_tracking:
total_loss = 0
for step, batch in enumerate(train_dataloader):
# We need to skip steps until we reach the resumed step
if args.resume_from_checkpoint and epoch == 0 and step < resume_step:
continue
outputs = model(**batch)
loss = outputs.loss
# We keep track of the loss at each epoch
if args.with_tracking:
total_loss += loss.detach().float()
loss = loss / args.gradient_accumulation_steps
accelerator.backward(loss)
if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
......@@ -522,6 +579,10 @@ def main():
progress_bar.update(1)
completed_steps += 1
if isinstance(checkpointing_steps, int):
if completed_steps % checkpointing_steps == 0:
accelerator.save_state(f"step_{completed_steps}")
if completed_steps >= args.max_train_steps:
break
......@@ -543,6 +604,16 @@ def main():
logger.info(f"epoch {epoch}: perplexity: {perplexity}")
if args.with_tracking:
accelerator.log(
{
"perplexity": perplexity,
"train_loss": total_loss,
"epoch": epoch,
},
step=completed_steps,
)
if args.push_to_hub and epoch < args.num_train_epochs - 1:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
......@@ -553,6 +624,9 @@ def main():
commit_message=f"Training in progress epoch {epoch}", blocking=False, auto_lfs_prune=True
)
if args.checkpointing_steps == "epoch":
accelerator.save_state(f"epoch_{epoch}")
if args.output_dir is not None:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
......
......@@ -177,6 +177,23 @@ def parse_args():
"--hub_model_id", type=str, help="The name of the repository to keep in sync with the local `output_dir`."
)
parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--checkpointing_steps",
type=str,
default=None,
help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.",
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help="If the training should continue from a checkpoint folder.",
)
parser.add_argument(
"--with_tracking",
required=False,
help="Whether to load in all available experiment trackers from the environment and use them for logging.",
)
args = parser.parse_args()
if args.push_to_hub:
......@@ -246,7 +263,8 @@ def main():
args = parse_args()
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
accelerator = Accelerator()
# If we're using tracking, we also need to initialize it here and it will pick up all supported trackers in the environment
accelerator = Accelerator(log_with="all") if args.with_tracking else Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
......@@ -431,14 +449,6 @@ def main():
device = accelerator.device
model.to(device)
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader
)
# Note -> the training dataloader needs to be prepared before we grab his length below (cause its length will be
# shorter in multiprocess)
# Scheduler and math around the number of training steps.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
......@@ -453,6 +463,23 @@ def main():
num_training_steps=args.max_train_steps,
)
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
)
# Figure out how many steps we should save the Accelerator states
if hasattr(args.checkpointing_steps, "isdigit"):
checkpointing_steps = args.checkpointing_steps
if args.checkpointing_steps.isdigit():
checkpointing_steps = int(args.checkpointing_steps)
else:
checkpointing_steps = None
# We need to initialize the trackers we use, and also store our configuration
if args.with_tracking:
accelerator.init_trackers("clm_no_trainer", args)
# Metrics
metric = load_metric("accuracy")
......@@ -470,11 +497,38 @@ def main():
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
completed_steps = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
accelerator.print(f"Resumed from checkpoint: {args.resume_from_checkpoint}")
accelerator.load_state(args.resume_from_checkpoint)
resume_step = None
path = args.resume_from_checkpoint
else:
# Get the most recent checkpoint
dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()]
dirs.sort(key=os.path.getctime)
path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last
if "epoch" in path:
args.num_train_epochs -= int(path.replace("epoch_", ""))
else:
resume_step = int(path.replace("step_", ""))
args.num_train_epochs -= resume_step // len(train_dataloader)
resume_step = (args.num_train_epochs * len(train_dataloader)) - resume_step
for epoch in range(args.num_train_epochs):
model.train()
if args.with_tracking:
total_loss = 0
for step, batch in enumerate(train_dataloader):
# We need to skip steps until we reach the resumed step
if args.resume_from_checkpoint and epoch == 0 and step < resume_step:
continue
outputs = model(**batch)
loss = outputs.loss
# We keep track of the loss at each epoch
if args.with_tracking:
total_loss += loss.detach().float()
loss = loss / args.gradient_accumulation_steps
accelerator.backward(loss)
if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
......@@ -484,6 +538,10 @@ def main():
progress_bar.update(1)
completed_steps += 1
if isinstance(checkpointing_steps, int):
if completed_steps % checkpointing_steps == 0:
accelerator.save_state(f"step_{completed_steps}")
if completed_steps >= args.max_train_steps:
break
......@@ -500,6 +558,16 @@ def main():
eval_metric = metric.compute()
accelerator.print(f"epoch {epoch}: {eval_metric}")
if args.with_tracking:
accelerator.log(
{
"accuracy": eval_metric,
"train_loss": total_loss,
"epoch": epoch,
},
step=completed_steps,
)
if args.push_to_hub and epoch < args.num_train_epochs - 1:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
......
......@@ -210,6 +210,23 @@ def parse_args():
"--hub_model_id", type=str, help="The name of the repository to keep in sync with the local `output_dir`."
)
parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--checkpointing_steps",
type=str,
default=None,
help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.",
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help="If the training should continue from a checkpoint folder.",
)
parser.add_argument(
"--with_tracking",
required=False,
help="Whether to load in all available experiment trackers from the environment and use them for logging.",
)
args = parser.parse_args()
# Sanity checks
......@@ -241,7 +258,8 @@ def main():
args = parse_args()
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
accelerator = Accelerator()
# If we're using tracking, we also need to initialize it here and it will pick up all supported trackers in the environment
accelerator = Accelerator(log_with="all") if args.with_tracking else Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
......@@ -670,14 +688,6 @@ def main():
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader
)
# Note -> the training dataloader needs to be prepared before we grab his length below (cause its length will be
# shorter in multiprocess)
# Scheduler and math around the number of training steps.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
......@@ -692,6 +702,23 @@ def main():
num_training_steps=args.max_train_steps,
)
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
)
# Figure out how many steps we should save the Accelerator states
if hasattr(args.checkpointing_steps, "isdigit"):
checkpointing_steps = args.checkpointing_steps
if args.checkpointing_steps.isdigit():
checkpointing_steps = int(args.checkpointing_steps)
else:
checkpointing_steps = None
# We need to initialize the trackers we use, and also store our configuration
if args.with_tracking:
accelerator.init_trackers("clm_no_trainer", args)
# Train!
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
......@@ -707,11 +734,38 @@ def main():
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
completed_steps = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
accelerator.print(f"Resumed from checkpoint: {args.resume_from_checkpoint}")
accelerator.load_state(args.resume_from_checkpoint)
resume_step = None
path = args.resume_from_checkpoint
else:
# Get the most recent checkpoint
dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()]
dirs.sort(key=os.path.getctime)
path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last
if "epoch" in path:
args.num_train_epochs -= int(path.replace("epoch_", ""))
else:
resume_step = int(path.replace("step_", ""))
args.num_train_epochs -= resume_step // len(train_dataloader)
resume_step = (args.num_train_epochs * len(train_dataloader)) - resume_step
for epoch in range(args.num_train_epochs):
model.train()
if args.with_tracking:
total_loss = 0
for step, batch in enumerate(train_dataloader):
# We need to skip steps until we reach the resumed step
if args.resume_from_checkpoint and epoch == 0 and step < resume_step:
continue
outputs = model(**batch)
loss = outputs.loss
# We keep track of the loss at each epoch
if args.with_tracking:
total_loss += loss.detach().float()
loss = loss / args.gradient_accumulation_steps
accelerator.backward(loss)
if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
......@@ -721,6 +775,10 @@ def main():
progress_bar.update(1)
completed_steps += 1
if isinstance(checkpointing_steps, int):
if completed_steps % checkpointing_steps == 0:
accelerator.save_state(f"step_{completed_steps}")
if completed_steps >= args.max_train_steps:
break
......@@ -847,6 +905,20 @@ def main():
predict_metric = metric.compute(predictions=prediction.predictions, references=prediction.label_ids)
logger.info(f"Predict metrics: {predict_metric}")
if args.with_tracking:
log = {
"squad_v2" if args.version_2_with_negative else "squad": eval_metric,
"train_loss": total_loss,
"epoch": epoch,
}
if args.do_predict:
log["squad_v2_predict" if args.version_2_with_negative else "squad_predict"] = predict_metric
accelerator.log(log, step=completed_steps)
if args.checkpointing_steps == "epoch":
accelerator.save_state(f"epoch_{epoch}")
if args.output_dir is not None:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
......
......@@ -239,6 +239,23 @@ def parse_args():
"--hub_model_id", type=str, help="The name of the repository to keep in sync with the local `output_dir`."
)
parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--checkpointing_steps",
type=str,
default=None,
help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.",
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help="If the training should continue from a checkpoint folder.",
)
parser.add_argument(
"--with_tracking",
required=False,
help="Whether to load in all available experiment trackers from the environment and use them for logging.",
)
args = parser.parse_args()
# Sanity checks
......@@ -270,7 +287,8 @@ def main():
args = parse_args()
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
accelerator = Accelerator()
# If we're using tracking, we also need to initialize it here and it will pick up all supported trackers in the environment
accelerator = Accelerator(log_with="all") if args.with_tracking else Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
......@@ -676,14 +694,6 @@ def main():
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader
)
# Note -> the training dataloader needs to be prepared before we grab his length below (cause its length will be
# shorter in multiprocess)
# Scheduler and math around the number of training steps.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
......@@ -698,6 +708,23 @@ def main():
num_training_steps=args.max_train_steps,
)
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
)
# Figure out how many steps we should save the Accelerator states
if hasattr(args.checkpointing_steps, "isdigit"):
checkpointing_steps = args.checkpointing_steps
if args.checkpointing_steps.isdigit():
checkpointing_steps = int(args.checkpointing_steps)
else:
checkpointing_steps = None
# We need to initialize the trackers we use, and also store our configuration
if args.with_tracking:
accelerator.init_trackers("clm_no_trainer", args)
# Train!
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
......@@ -713,11 +740,38 @@ def main():
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
completed_steps = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
accelerator.print(f"Resumed from checkpoint: {args.resume_from_checkpoint}")
accelerator.load_state(args.resume_from_checkpoint)
resume_step = None
path = args.resume_from_checkpoint
else:
# Get the most recent checkpoint
dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()]
dirs.sort(key=os.path.getctime)
path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last
if "epoch" in path:
args.num_train_epochs -= int(path.replace("epoch_", ""))
else:
resume_step = int(path.replace("step_", ""))
args.num_train_epochs -= resume_step // len(train_dataloader)
resume_step = (args.num_train_epochs * len(train_dataloader)) - resume_step
for epoch in range(args.num_train_epochs):
model.train()
if args.with_tracking:
total_loss = 0
for step, batch in enumerate(train_dataloader):
# We need to skip steps until we reach the resumed step
if args.resume_from_checkpoint and epoch == 0 and step < resume_step:
continue
outputs = model(**batch)
loss = outputs.loss
# We keep track of the loss at each epoch
if args.with_tracking:
total_loss += loss.detach().float()
loss = loss / args.gradient_accumulation_steps
accelerator.backward(loss)
if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
......@@ -727,6 +781,10 @@ def main():
progress_bar.update(1)
completed_steps += 1
if isinstance(checkpointing_steps, int):
if completed_steps % checkpointing_steps == 0:
accelerator.save_state(f"step_{completed_steps}")
if completed_steps >= args.max_train_steps:
break
......@@ -810,6 +868,20 @@ def main():
predict_metric = metric.compute(predictions=prediction.predictions, references=prediction.label_ids)
logger.info(f"Predict metrics: {predict_metric}")
if args.with_tracking:
log = {
"squad_v2" if args.version_2_with_negative else "squad": eval_metric,
"train_loss": total_loss,
"epoch": epoch,
}
if args.do_predict:
log["squad_v2_predict" if args.version_2_with_negative else "squad_predict"] = predict_metric
accelerator.log(log, step=completed_steps)
if args.checkpointing_steps == "epoch":
accelerator.save_state(f"epoch_{epoch}")
if args.output_dir is not None:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
......
......@@ -262,6 +262,23 @@ def parse_args():
"--hub_model_id", type=str, help="The name of the repository to keep in sync with the local `output_dir`."
)
parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--checkpointing_steps",
type=str,
default=None,
help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.",
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help="If the training should continue from a checkpoint folder.",
)
parser.add_argument(
"--with_tracking",
required=False,
help="Whether to load in all available experiment trackers from the environment and use them for logging.",
)
args = parser.parse_args()
# Sanity checks
......@@ -296,7 +313,8 @@ def main():
"`--source_prefix 'summarize: ' `"
)
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
accelerator = Accelerator()
# If we're using tracking, we also need to initialize it here and it will pick up all supported trackers in the environment
accelerator = Accelerator(log_with="all") if args.with_tracking else Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
......@@ -494,14 +512,6 @@ def main():
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader
)
# Note -> the training dataloader needs to be prepared before we grab his length below (cause its length will be
# shorter in multiprocess)
# Scheduler and math around the number of training steps.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
......@@ -516,6 +526,23 @@ def main():
num_training_steps=args.max_train_steps,
)
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
)
# Figure out how many steps we should save the Accelerator states
if hasattr(args.checkpointing_steps, "isdigit"):
checkpointing_steps = args.checkpointing_steps
if args.checkpointing_steps.isdigit():
checkpointing_steps = int(args.checkpointing_steps)
else:
checkpointing_steps = None
# We need to initialize the trackers we use, and also store our configuration
if args.with_tracking:
accelerator.init_trackers("summarization_no_trainer", args)
# Metric
metric = load_metric("rouge")
......@@ -532,12 +559,38 @@ def main():
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
completed_steps = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
accelerator.print(f"Resumed from checkpoint: {args.resume_from_checkpoint}")
accelerator.load_state(args.resume_from_checkpoint)
resume_step = None
path = args.resume_from_checkpoint
else:
# Get the most recent checkpoint
dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()]
dirs.sort(key=os.path.getctime)
path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last
if "epoch" in path:
args.num_train_epochs -= int(path.replace("epoch_", ""))
else:
resume_step = int(path.replace("step_", ""))
args.num_train_epochs -= resume_step // len(train_dataloader)
resume_step = (args.num_train_epochs * len(train_dataloader)) - resume_step
for epoch in range(args.num_train_epochs):
model.train()
if args.with_tracking:
total_loss = 0
for step, batch in enumerate(train_dataloader):
# We need to skip steps until we reach the resumed step
if args.resume_from_checkpoint and epoch == 0 and step < resume_step:
continue
outputs = model(**batch)
loss = outputs.loss
# We keep track of the loss at each epoch
if args.with_tracking:
total_loss += loss.detach().float()
loss = loss / args.gradient_accumulation_steps
accelerator.backward(loss)
if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
......@@ -547,6 +600,10 @@ def main():
progress_bar.update(1)
completed_steps += 1
if isinstance(checkpointing_steps, int):
if completed_steps % checkpointing_steps == 0:
accelerator.save_state(f"step_{completed_steps}")
if completed_steps >= args.max_train_steps:
break
......@@ -596,6 +653,11 @@ def main():
logger.info(result)
if args.with_tracking:
result["train_loss"] = total_loss
result["epoch"] = epoch
accelerator.log(result, step=completed_steps)
if args.push_to_hub and epoch < args.num_train_epochs - 1:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
......@@ -606,6 +668,9 @@ def main():
commit_message=f"Training in progress epoch {epoch}", blocking=False, auto_lfs_prune=True
)
if args.checkpointing_steps == "epoch":
accelerator.save_state(f"epoch_{epoch}")
if args.output_dir is not None:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
......
......@@ -150,6 +150,24 @@ def parse_args():
"--hub_model_id", type=str, help="The name of the repository to keep in sync with the local `output_dir`."
)
parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.")
parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--checkpointing_steps",
type=str,
default=None,
help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.",
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help="If the training should continue from a checkpoint folder.",
)
parser.add_argument(
"--with_tracking",
required=False,
help="Whether to load in all available experiment trackers from the environment and use them for logging.",
)
args = parser.parse_args()
# Sanity checks
......@@ -173,7 +191,8 @@ def main():
args = parse_args()
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
accelerator = Accelerator()
# If we're using tracking, we also need to initialize it here and it will pick up all supported trackers in the environment
accelerator = Accelerator(log_with="all") if args.with_tracking else Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
......@@ -376,14 +395,6 @@ def main():
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader
)
# Note -> the training dataloader needs to be prepared before we grab his length below (cause its length will be
# shorter in multiprocess)
# Scheduler and math around the number of training steps.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
......@@ -398,6 +409,23 @@ def main():
num_training_steps=args.max_train_steps,
)
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
)
# Figure out how many steps we should save the Accelerator states
if hasattr(args.checkpointing_steps, "isdigit"):
checkpointing_steps = args.checkpointing_steps
if args.checkpointing_steps.isdigit():
checkpointing_steps = int(args.checkpointing_steps)
else:
checkpointing_steps = None
# We need to initialize the trackers we use, and also store our configuration
if args.with_tracking:
accelerator.init_trackers("glue_no_trainer", args)
# Get the metric function
if args.task_name is not None:
metric = load_metric("glue", args.task_name)
......@@ -417,12 +445,38 @@ def main():
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
completed_steps = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
accelerator.print(f"Resumed from checkpoint: {args.resume_from_checkpoint}")
accelerator.load_state(args.resume_from_checkpoint)
resume_step = None
path = args.resume_from_checkpoint
else:
# Get the most recent checkpoint
dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()]
dirs.sort(key=os.path.getctime)
path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last
if "epoch" in path:
args.num_train_epochs -= int(path.replace("epoch_", ""))
else:
resume_step = int(path.replace("step_", ""))
args.num_train_epochs -= resume_step // len(train_dataloader)
resume_step = (args.num_train_epochs * len(train_dataloader)) - resume_step
for epoch in range(args.num_train_epochs):
model.train()
if args.with_tracking:
total_loss = 0
for step, batch in enumerate(train_dataloader):
# We need to skip steps until we reach the resumed step
if args.resume_from_checkpoint and epoch == 0 and step < resume_step:
continue
outputs = model(**batch)
loss = outputs.loss
# We keep track of the loss at each epoch
if args.with_tracking:
total_loss += loss.detach().float()
loss = loss / args.gradient_accumulation_steps
accelerator.backward(loss)
if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
......@@ -432,6 +486,10 @@ def main():
progress_bar.update(1)
completed_steps += 1
if isinstance(checkpointing_steps, int):
if completed_steps % checkpointing_steps == 0:
accelerator.save_state(f"step_{completed_steps}")
if completed_steps >= args.max_train_steps:
break
......@@ -447,6 +505,16 @@ def main():
eval_metric = metric.compute()
logger.info(f"epoch {epoch}: {eval_metric}")
if args.with_tracking:
accelerator.log(
{
"accuracy" if args.task_name is not None else "glue": eval_metric,
"train_loss": total_loss,
"epoch": epoch,
},
step=completed_steps,
)
if args.push_to_hub and epoch < args.num_train_epochs - 1:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
......@@ -457,6 +525,9 @@ def main():
commit_message=f"Training in progress epoch {epoch}", blocking=False, auto_lfs_prune=True
)
if args.checkpointing_steps == "epoch":
accelerator.save_state(f"epoch_{epoch}")
if args.output_dir is not None:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
......
......@@ -204,6 +204,23 @@ def parse_args():
"--hub_model_id", type=str, help="The name of the repository to keep in sync with the local `output_dir`."
)
parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--checkpointing_steps",
type=str,
default=None,
help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.",
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help="If the training should continue from a checkpoint folder.",
)
parser.add_argument(
"--with_tracking",
required=False,
help="Whether to load in all available experiment trackers from the environment and use them for logging.",
)
args = parser.parse_args()
# Sanity checks
......@@ -227,7 +244,8 @@ def main():
args = parse_args()
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
accelerator = Accelerator()
# If we're using tracking, we also need to initialize it here and it will pick up all supported trackers in the environment
accelerator = Accelerator(log_with="all") if args.with_tracking else Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
......@@ -491,14 +509,6 @@ def main():
device = accelerator.device
model.to(device)
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader
)
# Note -> the training dataloader needs to be prepared before we grab his length below (cause its length will be
# shorter in multiprocess)
# Scheduler and math around the number of training steps.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
......@@ -513,6 +523,23 @@ def main():
num_training_steps=args.max_train_steps,
)
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
)
# Figure out how many steps we should save the Accelerator states
if hasattr(args.checkpointing_steps, "isdigit"):
checkpointing_steps = args.checkpointing_steps
if args.checkpointing_steps.isdigit():
checkpointing_steps = int(args.checkpointing_steps)
else:
checkpointing_steps = None
# We need to initialize the trackers we use, and also store our configuration
if args.with_tracking:
accelerator.init_trackers("clm_no_trainer", args)
# Metrics
metric = load_metric("seqeval")
......@@ -569,12 +596,38 @@ def main():
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
completed_steps = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
accelerator.print(f"Resumed from checkpoint: {args.resume_from_checkpoint}")
accelerator.load_state(args.resume_from_checkpoint)
resume_step = None
path = args.resume_from_checkpoint
else:
# Get the most recent checkpoint
dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()]
dirs.sort(key=os.path.getctime)
path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last
if "epoch" in path:
args.num_train_epochs -= int(path.replace("epoch_", ""))
else:
resume_step = int(path.replace("step_", ""))
args.num_train_epochs -= resume_step // len(train_dataloader)
resume_step = (args.num_train_epochs * len(train_dataloader)) - resume_step
for epoch in range(args.num_train_epochs):
model.train()
if args.with_tracking:
total_loss = 0
for step, batch in enumerate(train_dataloader):
# We need to skip steps until we reach the resumed step
if args.resume_from_checkpoint and epoch == 0 and step < resume_step:
continue
outputs = model(**batch)
loss = outputs.loss
# We keep track of the loss at each epoch
if args.with_tracking:
total_loss += loss.detach().float()
loss = loss / args.gradient_accumulation_steps
accelerator.backward(loss)
if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
......@@ -584,6 +637,10 @@ def main():
progress_bar.update(1)
completed_steps += 1
if isinstance(checkpointing_steps, int):
if completed_steps % checkpointing_steps == 0:
accelerator.save_state(f"step_{completed_steps}")
if completed_steps >= args.max_train_steps:
break
......@@ -608,6 +665,15 @@ def main():
# eval_metric = metric.compute()
eval_metric = compute_metrics()
accelerator.print(f"epoch {epoch}:", eval_metric)
if args.with_tracking:
accelerator.log(
{
"seqeval": eval_metric,
"train_loss": total_loss,
"epoch": epoch,
},
step=completed_steps,
)
if args.push_to_hub and epoch < args.num_train_epochs - 1:
accelerator.wait_for_everyone()
......@@ -619,6 +685,9 @@ def main():
commit_message=f"Training in progress epoch {epoch}", blocking=False, auto_lfs_prune=True
)
if args.checkpointing_steps == "epoch":
accelerator.save_state(f"epoch_{epoch}")
if args.output_dir is not None:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
......
......@@ -243,6 +243,23 @@ def parse_args():
"--hub_model_id", type=str, help="The name of the repository to keep in sync with the local `output_dir`."
)
parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--checkpointing_steps",
type=str,
default=None,
help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.",
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help="If the training should continue from a checkpoint folder.",
)
parser.add_argument(
"--with_tracking",
required=False,
help="Whether to load in all available experiment trackers from the environment and use them for logging.",
)
args = parser.parse_args()
# Sanity checks
......@@ -268,7 +285,8 @@ def main():
args = parse_args()
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
accelerator = Accelerator()
# If we're using tracking, we also need to initialize it here and it will pick up all supported trackers in the environment
accelerator = Accelerator(log_with="all") if args.with_tracking else Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
......@@ -472,14 +490,6 @@ def main():
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader
)
# Note -> the training dataloader needs to be prepared before we grab his length below (cause its length will be
# shorter in multiprocess)
# Scheduler and math around the number of training steps.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
......@@ -494,6 +504,23 @@ def main():
num_training_steps=args.max_train_steps,
)
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
)
# Figure out how many steps we should save the Accelerator states
if hasattr(args.checkpointing_steps, "isdigit"):
checkpointing_steps = args.checkpointing_steps
if args.checkpointing_steps.isdigit():
checkpointing_steps = int(args.checkpointing_steps)
else:
checkpointing_steps = None
# We need to initialize the trackers we use, and also store our configuration
if args.with_tracking:
accelerator.init_trackers("translation_no_trainer", args)
metric = load_metric("sacrebleu")
def postprocess_text(preds, labels):
......@@ -516,11 +543,38 @@ def main():
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
completed_steps = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
accelerator.print(f"Resumed from checkpoint: {args.resume_from_checkpoint}")
accelerator.load_state(args.resume_from_checkpoint)
resume_step = None
path = args.resume_from_checkpoint
else:
# Get the most recent checkpoint
dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()]
dirs.sort(key=os.path.getctime)
path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last
if "epoch" in path:
args.num_train_epochs -= int(path.replace("epoch_", ""))
else:
resume_step = int(path.replace("step_", ""))
args.num_train_epochs -= resume_step // len(train_dataloader)
resume_step = (args.num_train_epochs * len(train_dataloader)) - resume_step
for epoch in range(args.num_train_epochs):
model.train()
if args.with_tracking:
total_loss = 0
for step, batch in enumerate(train_dataloader):
# We need to skip steps until we reach the resumed step
if args.resume_from_checkpoint and epoch == 0 and step < resume_step:
continue
outputs = model(**batch)
loss = outputs.loss
# We keep track of the loss at each epoch
if args.with_tracking:
total_loss += loss.detach().float()
loss = loss / args.gradient_accumulation_steps
accelerator.backward(loss)
if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
......@@ -530,6 +584,10 @@ def main():
progress_bar.update(1)
completed_steps += 1
if isinstance(checkpointing_steps, int):
if completed_steps % checkpointing_steps == 0:
accelerator.save_state(f"step_{completed_steps}")
if completed_steps >= args.max_train_steps:
break
......@@ -574,6 +632,16 @@ def main():
eval_metric = metric.compute()
logger.info({"bleu": eval_metric["score"]})
if args.with_tracking:
accelerator.log(
{
"blue": eval_metric["score"],
"train_loss": total_loss,
"epoch": epoch,
},
step=completed_steps,
)
if args.push_to_hub and epoch < args.num_train_epochs - 1:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
......@@ -584,6 +652,9 @@ def main():
commit_message=f"Training in progress epoch {epoch}", blocking=False, auto_lfs_prune=True
)
if args.checkpointing_steps == "epoch":
accelerator.save_state(f"epoch_{epoch}")
if args.output_dir is not None:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment