Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
fb56bf25
Unverified
Commit
fb56bf25
authored
Feb 19, 2021
by
Julien Plu
Committed by
GitHub
Feb 19, 2021
Browse files
Making TF MobileBert model compliant with AMP (#10259)
* Fix AMP * Trigger CI * Rework cast
parent
2fc6284f
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
15 additions
and
16 deletions
+15
-16
src/transformers/models/mobilebert/modeling_tf_mobilebert.py
src/transformers/models/mobilebert/modeling_tf_mobilebert.py
+15
-12
tests/test_modeling_tf_mobilebert.py
tests/test_modeling_tf_mobilebert.py
+0
-4
No files found.
src/transformers/models/mobilebert/modeling_tf_mobilebert.py
View file @
fb56bf25
...
...
@@ -251,11 +251,12 @@ class TFMobileBertSelfAttention(tf.keras.layers.Layer):
attention_scores
=
tf
.
matmul
(
query_layer
,
key_layer
,
transpose_b
=
True
)
# (batch size, num_heads, seq_len_q, seq_len_k)
dk
=
tf
.
cast
(
shape_list
(
key_layer
)[
-
1
],
tf
.
float32
)
# scale attention_scores
dk
=
tf
.
cast
(
shape_list
(
key_layer
)[
-
1
],
dtype
=
attention_scores
.
dtype
)
# scale attention_scores
attention_scores
=
attention_scores
/
tf
.
math
.
sqrt
(
dk
)
if
attention_mask
is
not
None
:
# Apply the attention mask is (precomputed for all layers in TFBertModel call() function)
# Apply the attention mask is (precomputed for all layers in TFMobileBertModel call() function)
attention_mask
=
tf
.
cast
(
attention_mask
,
dtype
=
attention_scores
.
dtype
)
attention_scores
=
attention_scores
+
attention_mask
# Normalize the attention scores to probabilities.
...
...
@@ -726,6 +727,14 @@ class TFMobileBertMainLayer(tf.keras.layers.Layer):
if
inputs
[
"token_type_ids"
]
is
None
:
inputs
[
"token_type_ids"
]
=
tf
.
fill
(
input_shape
,
0
)
embedding_output
=
self
.
embeddings
(
inputs
[
"input_ids"
],
inputs
[
"position_ids"
],
inputs
[
"token_type_ids"
],
inputs
[
"inputs_embeds"
],
training
=
inputs
[
"training"
],
)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
...
...
@@ -738,9 +747,10 @@ class TFMobileBertMainLayer(tf.keras.layers.Layer):
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask
=
tf
.
cast
(
extended_attention_mask
,
tf
.
float32
)
extended_attention_mask
=
(
1.0
-
extended_attention_mask
)
*
-
10000.0
extended_attention_mask
=
tf
.
cast
(
extended_attention_mask
,
dtype
=
embedding_output
.
dtype
)
one_cst
=
tf
.
constant
(
1.0
,
dtype
=
embedding_output
.
dtype
)
ten_thousand_cst
=
tf
.
constant
(
-
10000.0
,
dtype
=
embedding_output
.
dtype
)
extended_attention_mask
=
tf
.
multiply
(
tf
.
subtract
(
one_cst
,
extended_attention_mask
),
ten_thousand_cst
)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
...
...
@@ -752,13 +762,6 @@ class TFMobileBertMainLayer(tf.keras.layers.Layer):
else
:
inputs
[
"head_mask"
]
=
[
None
]
*
self
.
num_hidden_layers
embedding_output
=
self
.
embeddings
(
inputs
[
"input_ids"
],
inputs
[
"position_ids"
],
inputs
[
"token_type_ids"
],
inputs
[
"inputs_embeds"
],
training
=
inputs
[
"training"
],
)
encoder_outputs
=
self
.
encoder
(
embedding_output
,
extended_attention_mask
,
...
...
tests/test_modeling_tf_mobilebert.py
View file @
fb56bf25
...
...
@@ -310,10 +310,6 @@ class TFMobileBertModelTest(TFModelTesterMixin, unittest.TestCase):
# This test is too long (>30sec) and makes fail the CI
pass
def
test_mixed_precision
(
self
):
# TODO JP: Make MobileBert float16 compliant
pass
@
slow
def
test_model_from_pretrained
(
self
):
# for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment