Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
f5c45a19
Unverified
Commit
f5c45a19
authored
Oct 17, 2020
by
Patrick von Platen
Committed by
GitHub
Oct 17, 2020
Browse files
Fix Rag example docstring (#7872)
* fix rag examples * fix token generate example
parent
9f7b2b24
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
4 additions
and
8 deletions
+4
-8
src/transformers/modeling_rag.py
src/transformers/modeling_rag.py
+4
-8
No files found.
src/transformers/modeling_rag.py
View file @
f5c45a19
...
@@ -740,10 +740,6 @@ class RagSequenceForGeneration(RagPreTrainedModel):
...
@@ -740,10 +740,6 @@ class RagSequenceForGeneration(RagPreTrainedModel):
>>> doc_scores = torch.bmm(question_hidden_states.unsqueeze(1), docs_dict["retrieved_doc_embeds"].float().transpose(1, 2)).squeeze(1)
>>> doc_scores = torch.bmm(question_hidden_states.unsqueeze(1), docs_dict["retrieved_doc_embeds"].float().transpose(1, 2)).squeeze(1)
>>> # 3. Forward to generator
>>> # 3. Forward to generator
>>> outputs = model(context_input_ids=docs_dict["context_input_ids"], context_attention_mask=docs_dict["context_attention_mask"], doc_scores=doc_scores, decoder_input_ids=input_dict["labels"])
>>> outputs = model(context_input_ids=docs_dict["context_input_ids"], context_attention_mask=docs_dict["context_attention_mask"], doc_scores=doc_scores, decoder_input_ids=input_dict["labels"])
>>> # or directly generate
>>> generated = model.generate(input_ids=input_dict["input_ids"])
>>> generated_string = tokenizer.batch_decode(generated, skip_special_tokens=True)
"""
"""
exclude_bos_score
=
exclude_bos_score
if
exclude_bos_score
is
not
None
else
self
.
config
.
exclude_bos_score
exclude_bos_score
=
exclude_bos_score
if
exclude_bos_score
is
not
None
else
self
.
config
.
exclude_bos_score
reduce_loss
=
reduce_loss
if
reduce_loss
is
not
None
else
self
.
config
.
reduce_loss
reduce_loss
=
reduce_loss
if
reduce_loss
is
not
None
else
self
.
config
.
reduce_loss
...
@@ -1125,7 +1121,7 @@ class RagTokenForGeneration(RagPreTrainedModel):
...
@@ -1125,7 +1121,7 @@ class RagTokenForGeneration(RagPreTrainedModel):
>>> outputs = model(context_input_ids=docs_dict["context_input_ids"], context_attention_mask=docs_dict["context_attention_mask"], doc_scores=doc_scores, decoder_input_ids=input_dict["labels"])
>>> outputs = model(context_input_ids=docs_dict["context_input_ids"], context_attention_mask=docs_dict["context_attention_mask"], doc_scores=doc_scores, decoder_input_ids=input_dict["labels"])
>>> # or directly generate
>>> # or directly generate
>>> generated = model.generate(input_ids=
input_dict["input_ids"]
)
>>> generated = model.generate(
context_
input_ids=
docs_dict["context_input_ids"], context_attention_mask=docs_dict["context_attention_mask"], doc_scores=doc_scores
)
>>> generated_string = tokenizer.batch_decode(generated, skip_special_tokens=True)
>>> generated_string = tokenizer.batch_decode(generated, skip_special_tokens=True)
"""
"""
do_marginalize
=
do_marginalize
if
do_marginalize
is
not
None
else
self
.
config
.
do_marginalize
do_marginalize
=
do_marginalize
if
do_marginalize
is
not
None
else
self
.
config
.
do_marginalize
...
@@ -1307,9 +1303,6 @@ class RagTokenForGeneration(RagPreTrainedModel):
...
@@ -1307,9 +1303,6 @@ class RagTokenForGeneration(RagPreTrainedModel):
else
self
.
config
.
generator
.
decoder_start_token_id
else
self
.
config
.
generator
.
decoder_start_token_id
)
)
# batch_size
batch_size
=
input_ids
.
shape
[
0
]
# retrieve docs
# retrieve docs
if
self
.
retriever
is
not
None
and
context_input_ids
is
None
:
if
self
.
retriever
is
not
None
and
context_input_ids
is
None
:
question_hidden_states
=
self
.
question_encoder
(
input_ids
,
attention_mask
=
attention_mask
)[
0
]
question_hidden_states
=
self
.
question_encoder
(
input_ids
,
attention_mask
=
attention_mask
)[
0
]
...
@@ -1336,6 +1329,9 @@ class RagTokenForGeneration(RagPreTrainedModel):
...
@@ -1336,6 +1329,9 @@ class RagTokenForGeneration(RagPreTrainedModel):
1
1
)
)
# batch_size
batch_size
=
context_input_ids
.
shape
[
0
]
//
self
.
config
.
n_docs
encoder
=
self
.
rag
.
generator
.
get_encoder
()
encoder
=
self
.
rag
.
generator
.
get_encoder
()
encoder_outputs
=
encoder
(
input_ids
=
context_input_ids
,
attention_mask
=
context_attention_mask
,
return_dict
=
True
)
encoder_outputs
=
encoder
(
input_ids
=
context_input_ids
,
attention_mask
=
context_attention_mask
,
return_dict
=
True
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment