"git@developer.sourcefind.cn:chenpangpang/transformers.git" did not exist on "053efc5d2d2e87833e9b7290a0dd83fa77cd6ae8"
Unverified Commit ee6674d4 authored by Yih-Dar's avatar Yih-Dar Committed by GitHub
Browse files

Fix doc examples: name '...' is not defined (#14687)



* Fix doc examples: name '...' is not defined

* remove >>> and ... in some docstrings in visual_bert
Co-authored-by: default avatarydshieh <ydshieh@users.noreply.github.com>
parent e6219320
...@@ -1764,7 +1764,7 @@ class LongformerForMaskedLM(LongformerPreTrainedModel): ...@@ -1764,7 +1764,7 @@ class LongformerForMaskedLM(LongformerPreTrainedModel):
... # check ``LongformerModel.forward`` for more details how to set `attention_mask` ... # check ``LongformerModel.forward`` for more details how to set `attention_mask`
>>> outputs = model(input_ids, attention_mask=attention_mask, labels=input_ids) >>> outputs = model(input_ids, attention_mask=attention_mask, labels=input_ids)
>>> loss = outputs.loss >>> loss = outputs.loss
>>> prediction_logits = output.logits >>> prediction_logits = outputs.logits
""" """
return_dict = return_dict if return_dict is not None else self.config.use_return_dict return_dict = return_dict if return_dict is not None else self.config.use_return_dict
......
...@@ -1189,7 +1189,7 @@ class MegatronBertForCausalLM(MegatronBertPreTrainedModel): ...@@ -1189,7 +1189,7 @@ class MegatronBertForCausalLM(MegatronBertPreTrainedModel):
>>> import torch >>> import torch
>>> tokenizer = BertTokenizer.from_pretrained('nvidia/megatron-bert-cased-345m') >>> tokenizer = BertTokenizer.from_pretrained('nvidia/megatron-bert-cased-345m')
>>> model = MegatronBertLMHeadModel.from_pretrained('nvidia/megatron-bert-cased-345m', is_decoder=True) >>> model = MegatronBertForCausalLM.from_pretrained('nvidia/megatron-bert-cased-345m', is_decoder=True)
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs) >>> outputs = model(**inputs)
......
...@@ -741,27 +741,27 @@ class VisualBertModel(VisualBertPreTrainedModel): ...@@ -741,27 +741,27 @@ class VisualBertModel(VisualBertPreTrainedModel):
Example:: Example::
>>> # Assumption: `get_visual_embeddings(image)` gets the visual embeddings of the image. # Assumption: `get_visual_embeddings(image)` gets the visual embeddings of the image.
>>> from transformers import BertTokenizer, VisualBertModel from transformers import BertTokenizer, VisualBertModel
>>> import torch import torch
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>> model = VisualBertModel.from_pretrained('uclanlp/visualbert-vqa-coco-pre') model = VisualBertModel.from_pretrained('uclanlp/visualbert-vqa-coco-pre')
>>> inputs = tokenizer("The capital of France is Paris.", return_tensors="pt") inputs = tokenizer("The capital of France is Paris.", return_tensors="pt")
>>> visual_embeds = get_visual_embeddings(image).unsqueeze(0) visual_embeds = get_visual_embeddings(image).unsqueeze(0)
>>> visual_token_type_ids = torch.ones(visual_embeds.shape[:-1], dtype=torch.long) visual_token_type_ids = torch.ones(visual_embeds.shape[:-1], dtype=torch.long)
>>> visual_attention_mask = torch.ones(visual_embeds.shape[:-1], dtype=torch.float) visual_attention_mask = torch.ones(visual_embeds.shape[:-1], dtype=torch.float)
>>> inputs.update({ inputs.update({
... "visual_embeds": visual_embeds, "visual_embeds": visual_embeds,
... "visual_token_type_ids": visual_token_type_ids, "visual_token_type_ids": visual_token_type_ids,
... "visual_attention_mask": visual_attention_mask "visual_attention_mask": visual_attention_mask
... }) })
>>> outputs = model(**inputs) outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state last_hidden_states = outputs.last_hidden_state
""" """
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
...@@ -923,31 +923,31 @@ class VisualBertForPreTraining(VisualBertPreTrainedModel): ...@@ -923,31 +923,31 @@ class VisualBertForPreTraining(VisualBertPreTrainedModel):
Example:: Example::
>>> # Assumption: `get_visual_embeddings(image)` gets the visual embeddings of the image in the batch. # Assumption: `get_visual_embeddings(image)` gets the visual embeddings of the image in the batch.
>>> from transformers import BertTokenizer, VisualBertForPreTraining from transformers import BertTokenizer, VisualBertForPreTraining
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>> model = VisualBertForPreTraining.from_pretrained('uclanlp/visualbert-vqa-coco-pre') model = VisualBertForPreTraining.from_pretrained('uclanlp/visualbert-vqa-coco-pre')
>>> inputs = tokenizer("The capital of France is {mask}.", return_tensors="pt") inputs = tokenizer("The capital of France is {mask}.", return_tensors="pt")
>>> visual_embeds = get_visual_embeddings(image).unsqueeze(0) visual_embeds = get_visual_embeddings(image).unsqueeze(0)
>>> visual_token_type_ids = torch.ones(visual_embeds.shape[:-1], dtype=torch.long) visual_token_type_ids = torch.ones(visual_embeds.shape[:-1], dtype=torch.long)
>>> visual_attention_mask = torch.ones(visual_embeds.shape[:-1], dtype=torch.float) visual_attention_mask = torch.ones(visual_embeds.shape[:-1], dtype=torch.float)
>>> inputs.update({ inputs.update({
... "visual_embeds": visual_embeds, "visual_embeds": visual_embeds,
... "visual_token_type_ids": visual_token_type_ids, "visual_token_type_ids": visual_token_type_ids,
... "visual_attention_mask": visual_attention_mask "visual_attention_mask": visual_attention_mask
... }) })
>>> max_length = inputs["input_ids"].shape[-1]+visual_embeds.shape[-2] max_length = inputs["input_ids"].shape[-1]+visual_embeds.shape[-2]
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt", padding="max_length", max_length=max_length)["input_ids"] labels = tokenizer("The capital of France is Paris.", return_tensors="pt", padding="max_length", max_length=max_length)["input_ids"]
>>> sentence_image_labels = torch.tensor(1).unsqueeze(0) # Batch_size sentence_image_labels = torch.tensor(1).unsqueeze(0) # Batch_size
>>> outputs = model(**inputs, labels=labels, sentence_image_labels=sentence_image_labels) outputs = model(**inputs, labels=labels, sentence_image_labels=sentence_image_labels)
>>> loss = outputs.loss loss = outputs.loss
>>> prediction_logits = outputs.prediction_logits prediction_logits = outputs.prediction_logits
>>> seq_relationship_logits = outputs.seq_relationship_logits seq_relationship_logits = outputs.seq_relationship_logits
""" """
return_dict = return_dict if return_dict is not None else self.config.use_return_dict return_dict = return_dict if return_dict is not None else self.config.use_return_dict
...@@ -1057,37 +1057,38 @@ class VisualBertForMultipleChoice(VisualBertPreTrainedModel): ...@@ -1057,37 +1057,38 @@ class VisualBertForMultipleChoice(VisualBertPreTrainedModel):
Example:: Example::
>>> from transformers import BertTokenizer, VisualBertForMultipleChoice # Assumption: `get_visual_embeddings(image)` gets the visual embeddings of the image in the batch.
>>> import torch from transformers import BertTokenizer, VisualBertForMultipleChoice
import torch
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>> model = VisualBertForMultipleChoice.from_pretrained('uclanlp/visualbert-vcr') tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = VisualBertForMultipleChoice.from_pretrained('uclanlp/visualbert-vcr')
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife." prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice1 = "It is eaten while held in the hand." choice0 = "It is eaten with a fork and a knife."
choice1 = "It is eaten while held in the hand."
>>> visual_embeds = get_visual_embeddings(image)
>>> # (batch_size, num_choices, visual_seq_length, visual_embedding_dim) visual_embeds = get_visual_embeddings(image)
>>> visual_embeds = visual_embeds.expand(1, 2, *visual_embeds.shape) # (batch_size, num_choices, visual_seq_length, visual_embedding_dim)
>>> visual_token_type_ids = torch.ones(visual_embeds.shape[:-1], dtype=torch.long) visual_embeds = visual_embeds.expand(1, 2, *visual_embeds.shape)
>>> visual_attention_mask = torch.ones(visual_embeds.shape[:-1], dtype=torch.float) visual_token_type_ids = torch.ones(visual_embeds.shape[:-1], dtype=torch.long)
visual_attention_mask = torch.ones(visual_embeds.shape[:-1], dtype=torch.float)
>>> labels = torch.tensor(0).unsqueeze(0) # choice0 is correct (according to Wikipedia ;)), batch size 1
labels = torch.tensor(0).unsqueeze(0) # choice0 is correct (according to Wikipedia ;)), batch size 1
>>> encoding = tokenizer([[prompt, prompt], [choice0, choice1]], return_tensors='pt', padding=True)
>>> # batch size is 1 encoding = tokenizer([[prompt, prompt], [choice0, choice1]], return_tensors='pt', padding=True)
>>> inputs_dict = {k: v.unsqueeze(0) for k,v in encoding.items()} # batch size is 1
>>> inputs_dict.update({ inputs_dict = {k: v.unsqueeze(0) for k,v in encoding.items()}
... "visual_embeds": visual_embeds, inputs_dict.update({
... "visual_attention_mask": visual_attention_mask, "visual_embeds": visual_embeds,
... "visual_token_type_ids": visual_token_type_ids, "visual_attention_mask": visual_attention_mask,
... "labels": labels "visual_token_type_ids": visual_token_type_ids,
... }) "labels": labels
>>> outputs = model(**inputs_dict) })
outputs = model(**inputs_dict)
>>> loss = outputs.loss
>>> logits = outputs.logits loss = outputs.loss
logits = outputs.logits
""" """
return_dict = return_dict if return_dict is not None else self.config.use_return_dict return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
...@@ -1204,30 +1205,30 @@ class VisualBertForQuestionAnswering(VisualBertPreTrainedModel): ...@@ -1204,30 +1205,30 @@ class VisualBertForQuestionAnswering(VisualBertPreTrainedModel):
Example:: Example::
>>> # Assumption: `get_visual_embeddings(image)` gets the visual embeddings of the image in the batch. # Assumption: `get_visual_embeddings(image)` gets the visual embeddings of the image in the batch.
>>> from transformers import BertTokenizer, VisualBertForQuestionAnswering from transformers import BertTokenizer, VisualBertForQuestionAnswering
>>> import torch import torch
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>> model = VisualBertForQuestionAnswering.from_pretrained('uclanlp/visualbert-vqa') model = VisualBertForQuestionAnswering.from_pretrained('uclanlp/visualbert-vqa')
>>> text = "Who is eating the apple?" text = "Who is eating the apple?"
>>> inputs = tokenizer(text, return_tensors='pt') inputs = tokenizer(text, return_tensors='pt')
>>> visual_embeds = get_visual_embeddings(image).unsqueeze(0) visual_embeds = get_visual_embeddings(image).unsqueeze(0)
>>> visual_token_type_ids = torch.ones(visual_embeds.shape[:-1], dtype=torch.long) visual_token_type_ids = torch.ones(visual_embeds.shape[:-1], dtype=torch.long)
>>> visual_attention_mask = torch.ones(visual_embeds.shape[:-1], dtype=torch.float) visual_attention_mask = torch.ones(visual_embeds.shape[:-1], dtype=torch.float)
>>> inputs.update({ inputs.update({
... "visual_embeds": visual_embeds, "visual_embeds": visual_embeds,
... "visual_token_type_ids": visual_token_type_ids, "visual_token_type_ids": visual_token_type_ids,
... "visual_attention_mask": visual_attention_mask "visual_attention_mask": visual_attention_mask
... }) })
>>> labels = torch.tensor([[0.0,1.0]]).unsqueeze(0) # Batch size 1, Num labels 2 labels = torch.tensor([[0.0,1.0]]).unsqueeze(0) # Batch size 1, Num labels 2
>>> outputs = model(**inputs, labels=labels) outputs = model(**inputs, labels=labels)
>>> loss = outputs.loss loss = outputs.loss
>>> scores = outputs.logits scores = outputs.logits
""" """
return_dict = return_dict if return_dict is not None else self.config.use_return_dict return_dict = return_dict if return_dict is not None else self.config.use_return_dict
...@@ -1327,30 +1328,30 @@ class VisualBertForVisualReasoning(VisualBertPreTrainedModel): ...@@ -1327,30 +1328,30 @@ class VisualBertForVisualReasoning(VisualBertPreTrainedModel):
Example:: Example::
>>> # Assumption: `get_visual_embeddings(image)` gets the visual embeddings of the image in the batch. # Assumption: `get_visual_embeddings(image)` gets the visual embeddings of the image in the batch.
>>> from transformers import BertTokenizer, VisualBertForVisualReasoning from transformers import BertTokenizer, VisualBertForVisualReasoning
>>> import torch import torch
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>> model = VisualBertForVisualReasoning.from_pretrained('uclanlp/visualbert-nlvr2') model = VisualBertForVisualReasoning.from_pretrained('uclanlp/visualbert-nlvr2')
>>> text = "Who is eating the apple?" text = "Who is eating the apple?"
>>> inputs = tokenizer(text, return_tensors='pt') inputs = tokenizer(text, return_tensors='pt')
>>> visual_embeds = get_visual_embeddings(image).unsqueeze(0) visual_embeds = get_visual_embeddings(image).unsqueeze(0)
>>> visual_token_type_ids = torch.ones(visual_embeds.shape[:-1], dtype=torch.long) visual_token_type_ids = torch.ones(visual_embeds.shape[:-1], dtype=torch.long)
>>> visual_attention_mask = torch.ones(visual_embeds.shape[:-1], dtype=torch.float) visual_attention_mask = torch.ones(visual_embeds.shape[:-1], dtype=torch.float)
>>> inputs.update({ inputs.update({
... "visual_embeds": visual_embeds, "visual_embeds": visual_embeds,
... "visual_token_type_ids": visual_token_type_ids, "visual_token_type_ids": visual_token_type_ids,
... "visual_attention_mask": visual_attention_mask "visual_attention_mask": visual_attention_mask
... }) })
>>> labels = torch.tensor(1).unsqueeze(0) # Batch size 1, Num choices 2 labels = torch.tensor(1).unsqueeze(0) # Batch size 1, Num choices 2
>>> outputs = model(**inputs, labels=labels) outputs = model(**inputs, labels=labels)
>>> loss = outputs.loss loss = outputs.loss
>>> scores = outputs.logits scores = outputs.logits
""" """
return_dict = return_dict if return_dict is not None else self.config.use_return_dict return_dict = return_dict if return_dict is not None else self.config.use_return_dict
...@@ -1488,32 +1489,32 @@ class VisualBertForRegionToPhraseAlignment(VisualBertPreTrainedModel): ...@@ -1488,32 +1489,32 @@ class VisualBertForRegionToPhraseAlignment(VisualBertPreTrainedModel):
Example:: Example::
>>> # Assumption: `get_visual_embeddings(image)` gets the visual embeddings of the image in the batch. # Assumption: `get_visual_embeddings(image)` gets the visual embeddings of the image in the batch.
>>> from transformers import BertTokenizer, VisualBertForRegionToPhraseAlignment from transformers import BertTokenizer, VisualBertForRegionToPhraseAlignment
>>> import torch import torch
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>> model = VisualBertForRegionToPhraseAlignment.from_pretrained('uclanlp/visualbert-vqa-coco-pre') model = VisualBertForRegionToPhraseAlignment.from_pretrained('uclanlp/visualbert-vqa-coco-pre')
>>> text = "Who is eating the apple?" text = "Who is eating the apple?"
>>> inputs = tokenizer(text, return_tensors='pt') inputs = tokenizer(text, return_tensors='pt')
>>> visual_embeds = get_visual_embeddings(image).unsqueeze(0) visual_embeds = get_visual_embeddings(image).unsqueeze(0)
>>> visual_token_type_ids = torch.ones(visual_embeds.shape[:-1], dtype=torch.long) visual_token_type_ids = torch.ones(visual_embeds.shape[:-1], dtype=torch.long)
>>> visual_attention_mask = torch.ones(visual_embeds.shape[:-1], dtype=torch.float) visual_attention_mask = torch.ones(visual_embeds.shape[:-1], dtype=torch.float)
>>> region_to_phrase_position = torch.ones((1, inputs["input_ids"].shape[-1]+visual_embeds.shape[-2])) region_to_phrase_position = torch.ones((1, inputs["input_ids"].shape[-1]+visual_embeds.shape[-2]))
>>> inputs.update({ inputs.update({
... "region_to_phrase_position": region_to_phrase_position, "region_to_phrase_position": region_to_phrase_position,
... "visual_embeds": visual_embeds, "visual_embeds": visual_embeds,
... "visual_token_type_ids": visual_token_type_ids, "visual_token_type_ids": visual_token_type_ids,
... "visual_attention_mask": visual_attention_mask "visual_attention_mask": visual_attention_mask
... }) })
>>> labels = torch.ones((1, inputs["input_ids"].shape[-1]+visual_embeds.shape[-2], visual_embeds.shape[-2])) # Batch size 1 labels = torch.ones((1, inputs["input_ids"].shape[-1]+visual_embeds.shape[-2], visual_embeds.shape[-2])) # Batch size 1
>>> outputs = model(**inputs, labels=labels) outputs = model(**inputs, labels=labels)
>>> loss = outputs.loss loss = outputs.loss
>>> scores = outputs.logits scores = outputs.logits
""" """
if region_to_phrase_position is None: if region_to_phrase_position is None:
raise ValueError("`region_to_phrase_position` should not be None when using Flickr Model.") raise ValueError("`region_to_phrase_position` should not be None when using Flickr Model.")
......
...@@ -1517,7 +1517,7 @@ class Wav2Vec2ForMaskedLM(Wav2Vec2PreTrainedModel): ...@@ -1517,7 +1517,7 @@ class Wav2Vec2ForMaskedLM(Wav2Vec2PreTrainedModel):
Example:: Example::
>>> from transformers import Wav2Vec2Processor, Wav2Vec2Model >>> from transformers import Wav2Vec2Processor, Wav2Vec2ForMaskedLM
>>> from datasets import load_dataset >>> from datasets import load_dataset
>>> import soundfile as sf >>> import soundfile as sf
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment