Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
ec54d70e
Unverified
Commit
ec54d70e
authored
Jan 04, 2021
by
Julien Plu
Committed by
GitHub
Jan 04, 2021
Browse files
Fix TF DPR (#9283)
* Fix DPR * Keep usual models * Apply style * Address Sylvain's comments
parent
de29ff9b
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
105 additions
and
15 deletions
+105
-15
src/transformers/models/dpr/modeling_tf_dpr.py
src/transformers/models/dpr/modeling_tf_dpr.py
+105
-15
No files found.
src/transformers/models/dpr/modeling_tf_dpr.py
View file @
ec54d70e
...
...
@@ -144,18 +144,18 @@ class TFDPRReaderOutput(ModelOutput):
attentions
:
Optional
[
Tuple
[
tf
.
Tensor
]]
=
None
class
TFDPREncoder
(
TFPreTrainedModel
):
class
TFDPREncoder
Layer
(
tf
.
keras
.
layers
.
Layer
):
base_model_prefix
=
"bert_model"
def
__init__
(
self
,
config
:
DPRConfig
,
*
args
,
**
kwargs
):
super
().
__init__
(
config
,
*
args
,
**
kwargs
)
def
__init__
(
self
,
config
:
DPRConfig
,
**
kwargs
):
super
().
__init__
(
**
kwargs
)
# resolve name conflict with TFBertMainLayer instead of TFBertModel
self
.
bert_model
=
TFBertMainLayer
(
config
,
name
=
"bert_model"
)
self
.
bert_model
.
config
=
config
self
.
config
=
config
assert
self
.
bert_model
.
config
.
hidden_size
>
0
,
"Encoder hidden_size can't be zero"
assert
self
.
config
.
hidden_size
>
0
,
"Encoder hidden_size can't be zero"
self
.
projection_dim
=
config
.
projection_dim
if
self
.
projection_dim
>
0
:
self
.
encode_proj
=
tf
.
keras
.
layers
.
Dense
(
...
...
@@ -220,13 +220,14 @@ class TFDPREncoder(TFPreTrainedModel):
return
self
.
bert_model
.
config
.
hidden_size
class
TFDPRSpanPredictor
(
TFPreTrainedModel
):
class
TFDPRSpanPredictor
Layer
(
tf
.
keras
.
layers
.
Layer
):
base_model_prefix
=
"encoder"
def
__init__
(
self
,
config
:
DPRConfig
,
*
args
,
**
kwargs
):
super
().
__init__
(
config
,
*
args
,
**
kwargs
)
self
.
encoder
=
TFDPREncoder
(
config
,
name
=
"encoder"
)
def
__init__
(
self
,
config
:
DPRConfig
,
**
kwargs
):
super
().
__init__
(
**
kwargs
)
self
.
config
=
config
self
.
encoder
=
TFDPREncoderLayer
(
config
,
name
=
"encoder"
)
self
.
qa_outputs
=
tf
.
keras
.
layers
.
Dense
(
2
,
kernel_initializer
=
get_initializer
(
config
.
initializer_range
),
name
=
"qa_outputs"
...
...
@@ -299,6 +300,97 @@ class TFDPRSpanPredictor(TFPreTrainedModel):
)
class
TFDPRSpanPredictor
(
TFPreTrainedModel
):
base_model_prefix
=
"encoder"
def
__init__
(
self
,
config
:
DPRConfig
,
**
kwargs
):
super
().
__init__
(
config
,
**
kwargs
)
self
.
encoder
=
TFDPRSpanPredictorLayer
(
config
)
def
call
(
self
,
input_ids
:
tf
.
Tensor
=
None
,
attention_mask
:
Optional
[
tf
.
Tensor
]
=
None
,
token_type_ids
:
Optional
[
tf
.
Tensor
]
=
None
,
inputs_embeds
:
Optional
[
tf
.
Tensor
]
=
None
,
output_attentions
:
bool
=
False
,
output_hidden_states
:
bool
=
False
,
return_dict
:
bool
=
False
,
training
:
bool
=
False
,
**
kwargs
,
)
->
Union
[
TFDPRReaderOutput
,
Tuple
[
tf
.
Tensor
,
...]]:
inputs
=
input_processing
(
func
=
self
.
call
,
config
=
self
.
config
,
input_ids
=
input_ids
,
attention_mask
=
attention_mask
,
token_type_ids
=
token_type_ids
,
inputs_embeds
=
inputs_embeds
,
output_attentions
=
output_attentions
,
output_hidden_states
=
output_hidden_states
,
return_dict
=
return_dict
,
training
=
training
,
kwargs_call
=
kwargs
,
)
outputs
=
self
.
encoder
(
input_ids
=
inputs
[
"input_ids"
],
attention_mask
=
inputs
[
"attention_mask"
],
inputs_embeds
=
inputs
[
"inputs_embeds"
],
output_attentions
=
inputs
[
"output_attentions"
],
output_hidden_states
=
inputs
[
"output_hidden_states"
],
return_dict
=
inputs
[
"return_dict"
],
training
=
inputs
[
"training"
],
)
return
outputs
class
TFDPREncoder
(
TFPreTrainedModel
):
base_model_prefix
=
"encoder"
def
__init__
(
self
,
config
:
DPRConfig
,
**
kwargs
):
super
().
__init__
(
config
,
**
kwargs
)
self
.
encoder
=
TFDPREncoderLayer
(
config
)
def
call
(
self
,
input_ids
:
tf
.
Tensor
=
None
,
attention_mask
:
Optional
[
tf
.
Tensor
]
=
None
,
token_type_ids
:
Optional
[
tf
.
Tensor
]
=
None
,
inputs_embeds
:
Optional
[
tf
.
Tensor
]
=
None
,
output_attentions
:
bool
=
False
,
output_hidden_states
:
bool
=
False
,
return_dict
:
bool
=
False
,
training
:
bool
=
False
,
**
kwargs
,
)
->
Union
[
TFDPRReaderOutput
,
Tuple
[
tf
.
Tensor
,
...]]:
inputs
=
input_processing
(
func
=
self
.
call
,
config
=
self
.
config
,
input_ids
=
input_ids
,
attention_mask
=
attention_mask
,
token_type_ids
=
token_type_ids
,
inputs_embeds
=
inputs_embeds
,
output_attentions
=
output_attentions
,
output_hidden_states
=
output_hidden_states
,
return_dict
=
return_dict
,
training
=
training
,
kwargs_call
=
kwargs
,
)
outputs
=
self
.
encoder
(
input_ids
=
inputs
[
"input_ids"
],
attention_mask
=
inputs
[
"attention_mask"
],
inputs_embeds
=
inputs
[
"inputs_embeds"
],
output_attentions
=
inputs
[
"output_attentions"
],
output_hidden_states
=
inputs
[
"output_hidden_states"
],
return_dict
=
inputs
[
"return_dict"
],
training
=
inputs
[
"training"
],
)
return
outputs
##################
# PreTrainedModel
##################
...
...
@@ -465,8 +557,7 @@ TF_DPR_READER_INPUTS_DOCSTRING = r"""
class
TFDPRContextEncoder
(
TFDPRPretrainedContextEncoder
):
def
__init__
(
self
,
config
:
DPRConfig
,
*
args
,
**
kwargs
):
super
().
__init__
(
config
,
*
args
,
**
kwargs
)
self
.
config
=
config
self
.
ctx_encoder
=
TFDPREncoder
(
config
,
name
=
"ctx_encoder"
)
self
.
ctx_encoder
=
TFDPREncoderLayer
(
config
,
name
=
"ctx_encoder"
)
def
get_input_embeddings
(
self
):
return
self
.
ctx_encoder
.
bert_model
.
get_input_embeddings
()
...
...
@@ -541,6 +632,7 @@ class TFDPRContextEncoder(TFDPRPretrainedContextEncoder):
if
not
inputs
[
"return_dict"
]:
return
outputs
[
1
:]
return
TFDPRContextEncoderOutput
(
pooler_output
=
outputs
.
pooler_output
,
hidden_states
=
outputs
.
hidden_states
,
attentions
=
outputs
.
attentions
)
...
...
@@ -553,8 +645,7 @@ class TFDPRContextEncoder(TFDPRPretrainedContextEncoder):
class
TFDPRQuestionEncoder
(
TFDPRPretrainedQuestionEncoder
):
def
__init__
(
self
,
config
:
DPRConfig
,
*
args
,
**
kwargs
):
super
().
__init__
(
config
,
*
args
,
**
kwargs
)
self
.
config
=
config
self
.
question_encoder
=
TFDPREncoder
(
config
,
name
=
"question_encoder"
)
self
.
question_encoder
=
TFDPREncoderLayer
(
config
,
name
=
"question_encoder"
)
def
get_input_embeddings
(
self
):
return
self
.
question_encoder
.
bert_model
.
get_input_embeddings
()
...
...
@@ -641,8 +732,7 @@ class TFDPRQuestionEncoder(TFDPRPretrainedQuestionEncoder):
class
TFDPRReader
(
TFDPRPretrainedReader
):
def
__init__
(
self
,
config
:
DPRConfig
,
*
args
,
**
kwargs
):
super
().
__init__
(
config
,
*
args
,
**
kwargs
)
self
.
config
=
config
self
.
span_predictor
=
TFDPRSpanPredictor
(
config
,
name
=
"span_predictor"
)
self
.
span_predictor
=
TFDPRSpanPredictorLayer
(
config
,
name
=
"span_predictor"
)
def
get_input_embeddings
(
self
):
return
self
.
span_predictor
.
encoder
.
bert_model
.
get_input_embeddings
()
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment