Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
e9e77cd3
Unverified
Commit
e9e77cd3
authored
Feb 05, 2019
by
Thomas Wolf
Committed by
GitHub
Feb 05, 2019
Browse files
Merge pull request #218 from matej-svejda/master
Fix learning rate problems in run_classifier.py
parents
8f8bbd4a
1579c536
Changes
6
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
80 additions
and
94 deletions
+80
-94
.gitignore
.gitignore
+4
-1
examples/run_classifier.py
examples/run_classifier.py
+15
-19
examples/run_lm_finetuning.py
examples/run_lm_finetuning.py
+16
-17
examples/run_squad.py
examples/run_squad.py
+15
-19
examples/run_squad2.py
examples/run_squad2.py
+15
-19
examples/run_swag.py
examples/run_swag.py
+15
-19
No files found.
.gitignore
View file @
e9e77cd3
...
@@ -119,4 +119,7 @@ dmypy.json
...
@@ -119,4 +119,7 @@ dmypy.json
.vscode
.vscode
# TF code
# TF code
tensorflow_code
tensorflow_code
\ No newline at end of file
# Models
models
\ No newline at end of file
examples/run_classifier.py
View file @
e9e77cd3
...
@@ -33,7 +33,7 @@ from torch.utils.data.distributed import DistributedSampler
...
@@ -33,7 +33,7 @@ from torch.utils.data.distributed import DistributedSampler
from
pytorch_pretrained_bert.tokenization
import
BertTokenizer
from
pytorch_pretrained_bert.tokenization
import
BertTokenizer
from
pytorch_pretrained_bert.modeling
import
BertForSequenceClassification
from
pytorch_pretrained_bert.modeling
import
BertForSequenceClassification
from
pytorch_pretrained_bert.optimization
import
BertAdam
from
pytorch_pretrained_bert.optimization
import
BertAdam
,
warmup_linear
from
pytorch_pretrained_bert.file_utils
import
PYTORCH_PRETRAINED_BERT_CACHE
from
pytorch_pretrained_bert.file_utils
import
PYTORCH_PRETRAINED_BERT_CACHE
logging
.
basicConfig
(
format
=
'%(asctime)s - %(levelname)s - %(name)s - %(message)s'
,
logging
.
basicConfig
(
format
=
'%(asctime)s - %(levelname)s - %(name)s - %(message)s'
,
...
@@ -296,11 +296,6 @@ def accuracy(out, labels):
...
@@ -296,11 +296,6 @@ def accuracy(out, labels):
outputs
=
np
.
argmax
(
out
,
axis
=
1
)
outputs
=
np
.
argmax
(
out
,
axis
=
1
)
return
np
.
sum
(
outputs
==
labels
)
return
np
.
sum
(
outputs
==
labels
)
def
warmup_linear
(
x
,
warmup
=
0.002
):
if
x
<
warmup
:
return
x
/
warmup
return
1.0
-
x
def
main
():
def
main
():
parser
=
argparse
.
ArgumentParser
()
parser
=
argparse
.
ArgumentParser
()
...
@@ -416,7 +411,7 @@ def main():
...
@@ -416,7 +411,7 @@ def main():
raise
ValueError
(
"Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
.
format
(
raise
ValueError
(
"Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
.
format
(
args
.
gradient_accumulation_steps
))
args
.
gradient_accumulation_steps
))
args
.
train_batch_size
=
int
(
args
.
train_batch_size
/
args
.
gradient_accumulation_steps
)
args
.
train_batch_size
=
args
.
train_batch_size
/
/
args
.
gradient_accumulation_steps
random
.
seed
(
args
.
seed
)
random
.
seed
(
args
.
seed
)
np
.
random
.
seed
(
args
.
seed
)
np
.
random
.
seed
(
args
.
seed
)
...
@@ -443,11 +438,13 @@ def main():
...
@@ -443,11 +438,13 @@ def main():
tokenizer
=
BertTokenizer
.
from_pretrained
(
args
.
bert_model
,
do_lower_case
=
args
.
do_lower_case
)
tokenizer
=
BertTokenizer
.
from_pretrained
(
args
.
bert_model
,
do_lower_case
=
args
.
do_lower_case
)
train_examples
=
None
train_examples
=
None
num_train_steps
=
None
num_train_
optimization_
steps
=
None
if
args
.
do_train
:
if
args
.
do_train
:
train_examples
=
processor
.
get_train_examples
(
args
.
data_dir
)
train_examples
=
processor
.
get_train_examples
(
args
.
data_dir
)
num_train_steps
=
int
(
num_train_optimization_steps
=
int
(
len
(
train_examples
)
/
args
.
train_batch_size
/
args
.
gradient_accumulation_steps
*
args
.
num_train_epochs
)
len
(
train_examples
)
/
args
.
train_batch_size
/
args
.
gradient_accumulation_steps
)
*
args
.
num_train_epochs
if
args
.
local_rank
!=
-
1
:
num_train_optimization_steps
=
num_train_optimization_steps
//
torch
.
distributed
.
get_world_size
()
# Prepare model
# Prepare model
model
=
BertForSequenceClassification
.
from_pretrained
(
args
.
bert_model
,
model
=
BertForSequenceClassification
.
from_pretrained
(
args
.
bert_model
,
...
@@ -473,9 +470,6 @@ def main():
...
@@ -473,9 +470,6 @@ def main():
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
not
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay'
:
0.01
},
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
not
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay'
:
0.01
},
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay'
:
0.0
}
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay'
:
0.0
}
]
]
t_total
=
num_train_steps
if
args
.
local_rank
!=
-
1
:
t_total
=
t_total
//
torch
.
distributed
.
get_world_size
()
if
args
.
fp16
:
if
args
.
fp16
:
try
:
try
:
from
apex.optimizers
import
FP16_Optimizer
from
apex.optimizers
import
FP16_Optimizer
...
@@ -496,7 +490,7 @@ def main():
...
@@ -496,7 +490,7 @@ def main():
optimizer
=
BertAdam
(
optimizer_grouped_parameters
,
optimizer
=
BertAdam
(
optimizer_grouped_parameters
,
lr
=
args
.
learning_rate
,
lr
=
args
.
learning_rate
,
warmup
=
args
.
warmup_proportion
,
warmup
=
args
.
warmup_proportion
,
t_total
=
t_total
)
t_total
=
num_train_optimization_steps
)
global_step
=
0
global_step
=
0
nb_tr_steps
=
0
nb_tr_steps
=
0
...
@@ -507,7 +501,7 @@ def main():
...
@@ -507,7 +501,7 @@ def main():
logger
.
info
(
"***** Running training *****"
)
logger
.
info
(
"***** Running training *****"
)
logger
.
info
(
" Num examples = %d"
,
len
(
train_examples
))
logger
.
info
(
" Num examples = %d"
,
len
(
train_examples
))
logger
.
info
(
" Batch size = %d"
,
args
.
train_batch_size
)
logger
.
info
(
" Batch size = %d"
,
args
.
train_batch_size
)
logger
.
info
(
" Num steps = %d"
,
num_train_steps
)
logger
.
info
(
" Num steps = %d"
,
num_train_
optimization_
steps
)
all_input_ids
=
torch
.
tensor
([
f
.
input_ids
for
f
in
train_features
],
dtype
=
torch
.
long
)
all_input_ids
=
torch
.
tensor
([
f
.
input_ids
for
f
in
train_features
],
dtype
=
torch
.
long
)
all_input_mask
=
torch
.
tensor
([
f
.
input_mask
for
f
in
train_features
],
dtype
=
torch
.
long
)
all_input_mask
=
torch
.
tensor
([
f
.
input_mask
for
f
in
train_features
],
dtype
=
torch
.
long
)
all_segment_ids
=
torch
.
tensor
([
f
.
segment_ids
for
f
in
train_features
],
dtype
=
torch
.
long
)
all_segment_ids
=
torch
.
tensor
([
f
.
segment_ids
for
f
in
train_features
],
dtype
=
torch
.
long
)
...
@@ -541,10 +535,12 @@ def main():
...
@@ -541,10 +535,12 @@ def main():
nb_tr_examples
+=
input_ids
.
size
(
0
)
nb_tr_examples
+=
input_ids
.
size
(
0
)
nb_tr_steps
+=
1
nb_tr_steps
+=
1
if
(
step
+
1
)
%
args
.
gradient_accumulation_steps
==
0
:
if
(
step
+
1
)
%
args
.
gradient_accumulation_steps
==
0
:
# modify learning rate with special warm up BERT uses
if
args
.
fp16
:
lr_this_step
=
args
.
learning_rate
*
warmup_linear
(
global_step
/
t_total
,
args
.
warmup_proportion
)
# modify learning rate with special warm up BERT uses
for
param_group
in
optimizer
.
param_groups
:
# if args.fp16 is False, BertAdam is used that handles this automatically
param_group
[
'lr'
]
=
lr_this_step
lr_this_step
=
args
.
learning_rate
*
warmup_linear
(
global_step
/
num_train_optimization_steps
,
args
.
warmup_proportion
)
for
param_group
in
optimizer
.
param_groups
:
param_group
[
'lr'
]
=
lr_this_step
optimizer
.
step
()
optimizer
.
step
()
optimizer
.
zero_grad
()
optimizer
.
zero_grad
()
global_step
+=
1
global_step
+=
1
...
...
examples/run_lm_finetuning.py
View file @
e9e77cd3
...
@@ -31,7 +31,7 @@ from torch.utils.data.distributed import DistributedSampler
...
@@ -31,7 +31,7 @@ from torch.utils.data.distributed import DistributedSampler
from
pytorch_pretrained_bert.tokenization
import
BertTokenizer
from
pytorch_pretrained_bert.tokenization
import
BertTokenizer
from
pytorch_pretrained_bert.modeling
import
BertForPreTraining
from
pytorch_pretrained_bert.modeling
import
BertForPreTraining
from
pytorch_pretrained_bert.optimization
import
BertAdam
from
pytorch_pretrained_bert.optimization
import
BertAdam
,
warmup_linear
from
torch.utils.data
import
Dataset
from
torch.utils.data
import
Dataset
import
random
import
random
...
@@ -42,12 +42,6 @@ logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message
...
@@ -42,12 +42,6 @@ logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message
logger
=
logging
.
getLogger
(
__name__
)
logger
=
logging
.
getLogger
(
__name__
)
def
warmup_linear
(
x
,
warmup
=
0.002
):
if
x
<
warmup
:
return
x
/
warmup
return
1.0
-
x
class
BERTDataset
(
Dataset
):
class
BERTDataset
(
Dataset
):
def
__init__
(
self
,
corpus_path
,
tokenizer
,
seq_len
,
encoding
=
"utf-8"
,
corpus_lines
=
None
,
on_memory
=
True
):
def
__init__
(
self
,
corpus_path
,
tokenizer
,
seq_len
,
encoding
=
"utf-8"
,
corpus_lines
=
None
,
on_memory
=
True
):
self
.
vocab
=
tokenizer
.
vocab
self
.
vocab
=
tokenizer
.
vocab
...
@@ -503,7 +497,7 @@ def main():
...
@@ -503,7 +497,7 @@ def main():
raise
ValueError
(
"Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
.
format
(
raise
ValueError
(
"Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
.
format
(
args
.
gradient_accumulation_steps
))
args
.
gradient_accumulation_steps
))
args
.
train_batch_size
=
int
(
args
.
train_batch_size
/
args
.
gradient_accumulation_steps
)
args
.
train_batch_size
=
args
.
train_batch_size
/
/
args
.
gradient_accumulation_steps
random
.
seed
(
args
.
seed
)
random
.
seed
(
args
.
seed
)
np
.
random
.
seed
(
args
.
seed
)
np
.
random
.
seed
(
args
.
seed
)
...
@@ -521,13 +515,15 @@ def main():
...
@@ -521,13 +515,15 @@ def main():
tokenizer
=
BertTokenizer
.
from_pretrained
(
args
.
bert_model
,
do_lower_case
=
args
.
do_lower_case
)
tokenizer
=
BertTokenizer
.
from_pretrained
(
args
.
bert_model
,
do_lower_case
=
args
.
do_lower_case
)
#train_examples = None
#train_examples = None
num_train_steps
=
None
num_train_
optimization_
steps
=
None
if
args
.
do_train
:
if
args
.
do_train
:
print
(
"Loading Train Dataset"
,
args
.
train_file
)
print
(
"Loading Train Dataset"
,
args
.
train_file
)
train_dataset
=
BERTDataset
(
args
.
train_file
,
tokenizer
,
seq_len
=
args
.
max_seq_length
,
train_dataset
=
BERTDataset
(
args
.
train_file
,
tokenizer
,
seq_len
=
args
.
max_seq_length
,
corpus_lines
=
None
,
on_memory
=
args
.
on_memory
)
corpus_lines
=
None
,
on_memory
=
args
.
on_memory
)
num_train_steps
=
int
(
num_train_optimization_steps
=
int
(
len
(
train_dataset
)
/
args
.
train_batch_size
/
args
.
gradient_accumulation_steps
*
args
.
num_train_epochs
)
len
(
train_dataset
)
/
args
.
train_batch_size
/
args
.
gradient_accumulation_steps
)
*
args
.
num_train_epochs
if
args
.
local_rank
!=
-
1
:
num_train_optimization_steps
=
num_train_optimization_steps
//
torch
.
distributed
.
get_world_size
()
# Prepare model
# Prepare model
model
=
BertForPreTraining
.
from_pretrained
(
args
.
bert_model
)
model
=
BertForPreTraining
.
from_pretrained
(
args
.
bert_model
)
...
@@ -550,6 +546,7 @@ def main():
...
@@ -550,6 +546,7 @@ def main():
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
not
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay'
:
0.01
},
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
not
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay'
:
0.01
},
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay'
:
0.0
}
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay'
:
0.0
}
]
]
if
args
.
fp16
:
if
args
.
fp16
:
try
:
try
:
from
apex.optimizers
import
FP16_Optimizer
from
apex.optimizers
import
FP16_Optimizer
...
@@ -570,14 +567,14 @@ def main():
...
@@ -570,14 +567,14 @@ def main():
optimizer
=
BertAdam
(
optimizer_grouped_parameters
,
optimizer
=
BertAdam
(
optimizer_grouped_parameters
,
lr
=
args
.
learning_rate
,
lr
=
args
.
learning_rate
,
warmup
=
args
.
warmup_proportion
,
warmup
=
args
.
warmup_proportion
,
t_total
=
num_train_steps
)
t_total
=
num_train_
optimization_
steps
)
global_step
=
0
global_step
=
0
if
args
.
do_train
:
if
args
.
do_train
:
logger
.
info
(
"***** Running training *****"
)
logger
.
info
(
"***** Running training *****"
)
logger
.
info
(
" Num examples = %d"
,
len
(
train_dataset
))
logger
.
info
(
" Num examples = %d"
,
len
(
train_dataset
))
logger
.
info
(
" Batch size = %d"
,
args
.
train_batch_size
)
logger
.
info
(
" Batch size = %d"
,
args
.
train_batch_size
)
logger
.
info
(
" Num steps = %d"
,
num_train_steps
)
logger
.
info
(
" Num steps = %d"
,
num_train_
optimization_
steps
)
if
args
.
local_rank
==
-
1
:
if
args
.
local_rank
==
-
1
:
train_sampler
=
RandomSampler
(
train_dataset
)
train_sampler
=
RandomSampler
(
train_dataset
)
...
@@ -607,10 +604,12 @@ def main():
...
@@ -607,10 +604,12 @@ def main():
nb_tr_examples
+=
input_ids
.
size
(
0
)
nb_tr_examples
+=
input_ids
.
size
(
0
)
nb_tr_steps
+=
1
nb_tr_steps
+=
1
if
(
step
+
1
)
%
args
.
gradient_accumulation_steps
==
0
:
if
(
step
+
1
)
%
args
.
gradient_accumulation_steps
==
0
:
# modify learning rate with special warm up BERT uses
if
args
.
fp16
:
lr_this_step
=
args
.
learning_rate
*
warmup_linear
(
global_step
/
num_train_steps
,
args
.
warmup_proportion
)
# modify learning rate with special warm up BERT uses
for
param_group
in
optimizer
.
param_groups
:
# if args.fp16 is False, BertAdam is used that handles this automatically
param_group
[
'lr'
]
=
lr_this_step
lr_this_step
=
args
.
learning_rate
*
warmup_linear
(
global_step
/
num_train_optimization_steps
,
args
.
warmup_proportion
)
for
param_group
in
optimizer
.
param_groups
:
param_group
[
'lr'
]
=
lr_this_step
optimizer
.
step
()
optimizer
.
step
()
optimizer
.
zero_grad
()
optimizer
.
zero_grad
()
global_step
+=
1
global_step
+=
1
...
...
examples/run_squad.py
View file @
e9e77cd3
...
@@ -36,7 +36,7 @@ from torch.utils.data.distributed import DistributedSampler
...
@@ -36,7 +36,7 @@ from torch.utils.data.distributed import DistributedSampler
from
pytorch_pretrained_bert.tokenization
import
whitespace_tokenize
,
BasicTokenizer
,
BertTokenizer
from
pytorch_pretrained_bert.tokenization
import
whitespace_tokenize
,
BasicTokenizer
,
BertTokenizer
from
pytorch_pretrained_bert.modeling
import
BertForQuestionAnswering
from
pytorch_pretrained_bert.modeling
import
BertForQuestionAnswering
from
pytorch_pretrained_bert.optimization
import
BertAdam
from
pytorch_pretrained_bert.optimization
import
BertAdam
,
warmup_linear
from
pytorch_pretrained_bert.file_utils
import
PYTORCH_PRETRAINED_BERT_CACHE
from
pytorch_pretrained_bert.file_utils
import
PYTORCH_PRETRAINED_BERT_CACHE
logging
.
basicConfig
(
format
=
'%(asctime)s - %(levelname)s - %(name)s - %(message)s'
,
logging
.
basicConfig
(
format
=
'%(asctime)s - %(levelname)s - %(name)s - %(message)s'
,
...
@@ -670,11 +670,6 @@ def _compute_softmax(scores):
...
@@ -670,11 +670,6 @@ def _compute_softmax(scores):
probs
.
append
(
score
/
total_sum
)
probs
.
append
(
score
/
total_sum
)
return
probs
return
probs
def
warmup_linear
(
x
,
warmup
=
0.002
):
if
x
<
warmup
:
return
x
/
warmup
return
1.0
-
x
def
main
():
def
main
():
parser
=
argparse
.
ArgumentParser
()
parser
=
argparse
.
ArgumentParser
()
...
@@ -762,7 +757,7 @@ def main():
...
@@ -762,7 +757,7 @@ def main():
raise
ValueError
(
"Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
.
format
(
raise
ValueError
(
"Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
.
format
(
args
.
gradient_accumulation_steps
))
args
.
gradient_accumulation_steps
))
args
.
train_batch_size
=
int
(
args
.
train_batch_size
/
args
.
gradient_accumulation_steps
)
args
.
train_batch_size
=
args
.
train_batch_size
/
/
args
.
gradient_accumulation_steps
random
.
seed
(
args
.
seed
)
random
.
seed
(
args
.
seed
)
np
.
random
.
seed
(
args
.
seed
)
np
.
random
.
seed
(
args
.
seed
)
...
@@ -789,12 +784,14 @@ def main():
...
@@ -789,12 +784,14 @@ def main():
tokenizer
=
BertTokenizer
.
from_pretrained
(
args
.
bert_model
,
do_lower_case
=
args
.
do_lower_case
)
tokenizer
=
BertTokenizer
.
from_pretrained
(
args
.
bert_model
,
do_lower_case
=
args
.
do_lower_case
)
train_examples
=
None
train_examples
=
None
num_train_steps
=
None
num_train_
optimization_
steps
=
None
if
args
.
do_train
:
if
args
.
do_train
:
train_examples
=
read_squad_examples
(
train_examples
=
read_squad_examples
(
input_file
=
args
.
train_file
,
is_training
=
True
)
input_file
=
args
.
train_file
,
is_training
=
True
)
num_train_steps
=
int
(
num_train_optimization_steps
=
int
(
len
(
train_examples
)
/
args
.
train_batch_size
/
args
.
gradient_accumulation_steps
*
args
.
num_train_epochs
)
len
(
train_examples
)
/
args
.
train_batch_size
/
args
.
gradient_accumulation_steps
)
*
args
.
num_train_epochs
if
args
.
local_rank
!=
-
1
:
num_train_optimization_steps
=
num_train_optimization_steps
//
torch
.
distributed
.
get_world_size
()
# Prepare model
# Prepare model
model
=
BertForQuestionAnswering
.
from_pretrained
(
args
.
bert_model
,
model
=
BertForQuestionAnswering
.
from_pretrained
(
args
.
bert_model
,
...
@@ -826,9 +823,6 @@ def main():
...
@@ -826,9 +823,6 @@ def main():
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay'
:
0.0
}
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay'
:
0.0
}
]
]
t_total
=
num_train_steps
if
args
.
local_rank
!=
-
1
:
t_total
=
t_total
//
torch
.
distributed
.
get_world_size
()
if
args
.
fp16
:
if
args
.
fp16
:
try
:
try
:
from
apex.optimizers
import
FP16_Optimizer
from
apex.optimizers
import
FP16_Optimizer
...
@@ -848,7 +842,7 @@ def main():
...
@@ -848,7 +842,7 @@ def main():
optimizer
=
BertAdam
(
optimizer_grouped_parameters
,
optimizer
=
BertAdam
(
optimizer_grouped_parameters
,
lr
=
args
.
learning_rate
,
lr
=
args
.
learning_rate
,
warmup
=
args
.
warmup_proportion
,
warmup
=
args
.
warmup_proportion
,
t_total
=
t_total
)
t_total
=
num_train_optimization_steps
)
global_step
=
0
global_step
=
0
if
args
.
do_train
:
if
args
.
do_train
:
...
@@ -874,7 +868,7 @@ def main():
...
@@ -874,7 +868,7 @@ def main():
logger
.
info
(
" Num orig examples = %d"
,
len
(
train_examples
))
logger
.
info
(
" Num orig examples = %d"
,
len
(
train_examples
))
logger
.
info
(
" Num split examples = %d"
,
len
(
train_features
))
logger
.
info
(
" Num split examples = %d"
,
len
(
train_features
))
logger
.
info
(
" Batch size = %d"
,
args
.
train_batch_size
)
logger
.
info
(
" Batch size = %d"
,
args
.
train_batch_size
)
logger
.
info
(
" Num steps = %d"
,
num_train_steps
)
logger
.
info
(
" Num steps = %d"
,
num_train_
optimization_
steps
)
all_input_ids
=
torch
.
tensor
([
f
.
input_ids
for
f
in
train_features
],
dtype
=
torch
.
long
)
all_input_ids
=
torch
.
tensor
([
f
.
input_ids
for
f
in
train_features
],
dtype
=
torch
.
long
)
all_input_mask
=
torch
.
tensor
([
f
.
input_mask
for
f
in
train_features
],
dtype
=
torch
.
long
)
all_input_mask
=
torch
.
tensor
([
f
.
input_mask
for
f
in
train_features
],
dtype
=
torch
.
long
)
all_segment_ids
=
torch
.
tensor
([
f
.
segment_ids
for
f
in
train_features
],
dtype
=
torch
.
long
)
all_segment_ids
=
torch
.
tensor
([
f
.
segment_ids
for
f
in
train_features
],
dtype
=
torch
.
long
)
...
@@ -905,10 +899,12 @@ def main():
...
@@ -905,10 +899,12 @@ def main():
else
:
else
:
loss
.
backward
()
loss
.
backward
()
if
(
step
+
1
)
%
args
.
gradient_accumulation_steps
==
0
:
if
(
step
+
1
)
%
args
.
gradient_accumulation_steps
==
0
:
# modify learning rate with special warm up BERT uses
if
args
.
fp16
:
lr_this_step
=
args
.
learning_rate
*
warmup_linear
(
global_step
/
t_total
,
args
.
warmup_proportion
)
# modify learning rate with special warm up BERT uses
for
param_group
in
optimizer
.
param_groups
:
# if args.fp16 is False, BertAdam is used that handles this automatically
param_group
[
'lr'
]
=
lr_this_step
lr_this_step
=
args
.
learning_rate
*
warmup_linear
(
global_step
/
num_train_optimization_steps
,
args
.
warmup_proportion
)
for
param_group
in
optimizer
.
param_groups
:
param_group
[
'lr'
]
=
lr_this_step
optimizer
.
step
()
optimizer
.
step
()
optimizer
.
zero_grad
()
optimizer
.
zero_grad
()
global_step
+=
1
global_step
+=
1
...
...
examples/run_squad2.py
View file @
e9e77cd3
...
@@ -36,7 +36,7 @@ from torch.utils.data.distributed import DistributedSampler
...
@@ -36,7 +36,7 @@ from torch.utils.data.distributed import DistributedSampler
from
pytorch_pretrained_bert.tokenization
import
whitespace_tokenize
,
BasicTokenizer
,
BertTokenizer
from
pytorch_pretrained_bert.tokenization
import
whitespace_tokenize
,
BasicTokenizer
,
BertTokenizer
from
pytorch_pretrained_bert.modeling
import
BertForQuestionAnswering
from
pytorch_pretrained_bert.modeling
import
BertForQuestionAnswering
from
pytorch_pretrained_bert.optimization
import
BertAdam
from
pytorch_pretrained_bert.optimization
import
BertAdam
,
warmup_linear
from
pytorch_pretrained_bert.file_utils
import
PYTORCH_PRETRAINED_BERT_CACHE
from
pytorch_pretrained_bert.file_utils
import
PYTORCH_PRETRAINED_BERT_CACHE
logging
.
basicConfig
(
format
=
'%(asctime)s - %(levelname)s - %(name)s - %(message)s'
,
logging
.
basicConfig
(
format
=
'%(asctime)s - %(levelname)s - %(name)s - %(message)s'
,
...
@@ -759,11 +759,6 @@ def _compute_softmax(scores):
...
@@ -759,11 +759,6 @@ def _compute_softmax(scores):
probs
.
append
(
score
/
total_sum
)
probs
.
append
(
score
/
total_sum
)
return
probs
return
probs
def
warmup_linear
(
x
,
warmup
=
0.002
):
if
x
<
warmup
:
return
x
/
warmup
return
1.0
-
x
def
main
():
def
main
():
parser
=
argparse
.
ArgumentParser
()
parser
=
argparse
.
ArgumentParser
()
...
@@ -855,7 +850,7 @@ def main():
...
@@ -855,7 +850,7 @@ def main():
raise
ValueError
(
"Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
.
format
(
raise
ValueError
(
"Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
.
format
(
args
.
gradient_accumulation_steps
))
args
.
gradient_accumulation_steps
))
args
.
train_batch_size
=
int
(
args
.
train_batch_size
/
args
.
gradient_accumulation_steps
)
args
.
train_batch_size
=
args
.
train_batch_size
/
/
args
.
gradient_accumulation_steps
random
.
seed
(
args
.
seed
)
random
.
seed
(
args
.
seed
)
np
.
random
.
seed
(
args
.
seed
)
np
.
random
.
seed
(
args
.
seed
)
...
@@ -882,12 +877,14 @@ def main():
...
@@ -882,12 +877,14 @@ def main():
tokenizer
=
BertTokenizer
.
from_pretrained
(
args
.
bert_model
)
tokenizer
=
BertTokenizer
.
from_pretrained
(
args
.
bert_model
)
train_examples
=
None
train_examples
=
None
num_train_steps
=
None
num_train_
optimization_
steps
=
None
if
args
.
do_train
:
if
args
.
do_train
:
train_examples
=
read_squad_examples
(
train_examples
=
read_squad_examples
(
input_file
=
args
.
train_file
,
is_training
=
True
)
input_file
=
args
.
train_file
,
is_training
=
True
)
num_train_steps
=
int
(
num_train_optimization_steps
=
int
(
len
(
train_examples
)
/
args
.
train_batch_size
/
args
.
gradient_accumulation_steps
*
args
.
num_train_epochs
)
len
(
train_examples
)
/
args
.
train_batch_size
/
args
.
gradient_accumulation_steps
)
*
args
.
num_train_epochs
if
args
.
local_rank
!=
-
1
:
num_train_optimization_steps
=
num_train_optimization_steps
//
torch
.
distributed
.
get_world_size
()
# Prepare model
# Prepare model
model
=
BertForQuestionAnswering
.
from_pretrained
(
args
.
bert_model
,
model
=
BertForQuestionAnswering
.
from_pretrained
(
args
.
bert_model
,
...
@@ -919,9 +916,6 @@ def main():
...
@@ -919,9 +916,6 @@ def main():
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay'
:
0.0
}
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay'
:
0.0
}
]
]
t_total
=
num_train_steps
if
args
.
local_rank
!=
-
1
:
t_total
=
t_total
//
torch
.
distributed
.
get_world_size
()
if
args
.
fp16
:
if
args
.
fp16
:
try
:
try
:
from
apex.optimizers
import
FP16_Optimizer
from
apex.optimizers
import
FP16_Optimizer
...
@@ -941,7 +935,7 @@ def main():
...
@@ -941,7 +935,7 @@ def main():
optimizer
=
BertAdam
(
optimizer_grouped_parameters
,
optimizer
=
BertAdam
(
optimizer_grouped_parameters
,
lr
=
args
.
learning_rate
,
lr
=
args
.
learning_rate
,
warmup
=
args
.
warmup_proportion
,
warmup
=
args
.
warmup_proportion
,
t_total
=
t_total
)
t_total
=
num_train_optimization_steps
)
global_step
=
0
global_step
=
0
if
args
.
do_train
:
if
args
.
do_train
:
...
@@ -967,7 +961,7 @@ def main():
...
@@ -967,7 +961,7 @@ def main():
logger
.
info
(
" Num orig examples = %d"
,
len
(
train_examples
))
logger
.
info
(
" Num orig examples = %d"
,
len
(
train_examples
))
logger
.
info
(
" Num split examples = %d"
,
len
(
train_features
))
logger
.
info
(
" Num split examples = %d"
,
len
(
train_features
))
logger
.
info
(
" Batch size = %d"
,
args
.
train_batch_size
)
logger
.
info
(
" Batch size = %d"
,
args
.
train_batch_size
)
logger
.
info
(
" Num steps = %d"
,
num_train_steps
)
logger
.
info
(
" Num steps = %d"
,
num_train_
optimization_
steps
)
all_input_ids
=
torch
.
tensor
([
f
.
input_ids
for
f
in
train_features
],
dtype
=
torch
.
long
)
all_input_ids
=
torch
.
tensor
([
f
.
input_ids
for
f
in
train_features
],
dtype
=
torch
.
long
)
all_input_mask
=
torch
.
tensor
([
f
.
input_mask
for
f
in
train_features
],
dtype
=
torch
.
long
)
all_input_mask
=
torch
.
tensor
([
f
.
input_mask
for
f
in
train_features
],
dtype
=
torch
.
long
)
all_segment_ids
=
torch
.
tensor
([
f
.
segment_ids
for
f
in
train_features
],
dtype
=
torch
.
long
)
all_segment_ids
=
torch
.
tensor
([
f
.
segment_ids
for
f
in
train_features
],
dtype
=
torch
.
long
)
...
@@ -999,10 +993,12 @@ def main():
...
@@ -999,10 +993,12 @@ def main():
else
:
else
:
loss
.
backward
()
loss
.
backward
()
if
(
step
+
1
)
%
args
.
gradient_accumulation_steps
==
0
:
if
(
step
+
1
)
%
args
.
gradient_accumulation_steps
==
0
:
# modify learning rate with special warm up BERT uses
if
args
.
fp16
:
lr_this_step
=
args
.
learning_rate
*
warmup_linear
(
global_step
/
t_total
,
args
.
warmup_proportion
)
# modify learning rate with special warm up BERT uses
for
param_group
in
optimizer
.
param_groups
:
# if args.fp16 is False, BertAdam is used that handles this automatically
param_group
[
'lr'
]
=
lr_this_step
lr_this_step
=
args
.
learning_rate
*
warmup_linear
(
global_step
/
num_train_optimization_steps
,
args
.
warmup_proportion
)
for
param_group
in
optimizer
.
param_groups
:
param_group
[
'lr'
]
=
lr_this_step
optimizer
.
step
()
optimizer
.
step
()
optimizer
.
zero_grad
()
optimizer
.
zero_grad
()
global_step
+=
1
global_step
+=
1
...
...
examples/run_swag.py
View file @
e9e77cd3
...
@@ -29,7 +29,7 @@ from torch.utils.data.distributed import DistributedSampler
...
@@ -29,7 +29,7 @@ from torch.utils.data.distributed import DistributedSampler
from
pytorch_pretrained_bert.tokenization
import
BertTokenizer
from
pytorch_pretrained_bert.tokenization
import
BertTokenizer
from
pytorch_pretrained_bert.modeling
import
BertForMultipleChoice
from
pytorch_pretrained_bert.modeling
import
BertForMultipleChoice
from
pytorch_pretrained_bert.optimization
import
BertAdam
from
pytorch_pretrained_bert.optimization
import
BertAdam
,
warmup_linear
from
pytorch_pretrained_bert.file_utils
import
PYTORCH_PRETRAINED_BERT_CACHE
from
pytorch_pretrained_bert.file_utils
import
PYTORCH_PRETRAINED_BERT_CACHE
logging
.
basicConfig
(
format
=
'%(asctime)s - %(levelname)s - %(name)s - %(message)s'
,
logging
.
basicConfig
(
format
=
'%(asctime)s - %(levelname)s - %(name)s - %(message)s'
,
...
@@ -233,11 +233,6 @@ def select_field(features, field):
...
@@ -233,11 +233,6 @@ def select_field(features, field):
for
feature
in
features
for
feature
in
features
]
]
def
warmup_linear
(
x
,
warmup
=
0.002
):
if
x
<
warmup
:
return
x
/
warmup
return
1.0
-
x
def
main
():
def
main
():
parser
=
argparse
.
ArgumentParser
()
parser
=
argparse
.
ArgumentParser
()
...
@@ -336,7 +331,7 @@ def main():
...
@@ -336,7 +331,7 @@ def main():
raise
ValueError
(
"Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
.
format
(
raise
ValueError
(
"Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
.
format
(
args
.
gradient_accumulation_steps
))
args
.
gradient_accumulation_steps
))
args
.
train_batch_size
=
int
(
args
.
train_batch_size
/
args
.
gradient_accumulation_steps
)
args
.
train_batch_size
=
args
.
train_batch_size
/
/
args
.
gradient_accumulation_steps
random
.
seed
(
args
.
seed
)
random
.
seed
(
args
.
seed
)
np
.
random
.
seed
(
args
.
seed
)
np
.
random
.
seed
(
args
.
seed
)
...
@@ -354,11 +349,13 @@ def main():
...
@@ -354,11 +349,13 @@ def main():
tokenizer
=
BertTokenizer
.
from_pretrained
(
args
.
bert_model
,
do_lower_case
=
args
.
do_lower_case
)
tokenizer
=
BertTokenizer
.
from_pretrained
(
args
.
bert_model
,
do_lower_case
=
args
.
do_lower_case
)
train_examples
=
None
train_examples
=
None
num_train_steps
=
None
num_train_
optimization_
steps
=
None
if
args
.
do_train
:
if
args
.
do_train
:
train_examples
=
read_swag_examples
(
os
.
path
.
join
(
args
.
data_dir
,
'train.csv'
),
is_training
=
True
)
train_examples
=
read_swag_examples
(
os
.
path
.
join
(
args
.
data_dir
,
'train.csv'
),
is_training
=
True
)
num_train_steps
=
int
(
num_train_optimization_steps
=
int
(
len
(
train_examples
)
/
args
.
train_batch_size
/
args
.
gradient_accumulation_steps
*
args
.
num_train_epochs
)
len
(
train_examples
)
/
args
.
train_batch_size
/
args
.
gradient_accumulation_steps
)
*
args
.
num_train_epochs
if
args
.
local_rank
!=
-
1
:
num_train_optimization_steps
=
num_train_optimization_steps
//
torch
.
distributed
.
get_world_size
()
# Prepare model
# Prepare model
model
=
BertForMultipleChoice
.
from_pretrained
(
args
.
bert_model
,
model
=
BertForMultipleChoice
.
from_pretrained
(
args
.
bert_model
,
...
@@ -389,9 +386,6 @@ def main():
...
@@ -389,9 +386,6 @@ def main():
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
not
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay'
:
0.01
},
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
not
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay'
:
0.01
},
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay'
:
0.0
}
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay'
:
0.0
}
]
]
t_total
=
num_train_steps
if
args
.
local_rank
!=
-
1
:
t_total
=
t_total
//
torch
.
distributed
.
get_world_size
()
if
args
.
fp16
:
if
args
.
fp16
:
try
:
try
:
from
apex.optimizers
import
FP16_Optimizer
from
apex.optimizers
import
FP16_Optimizer
...
@@ -411,7 +405,7 @@ def main():
...
@@ -411,7 +405,7 @@ def main():
optimizer
=
BertAdam
(
optimizer_grouped_parameters
,
optimizer
=
BertAdam
(
optimizer_grouped_parameters
,
lr
=
args
.
learning_rate
,
lr
=
args
.
learning_rate
,
warmup
=
args
.
warmup_proportion
,
warmup
=
args
.
warmup_proportion
,
t_total
=
t_total
)
t_total
=
num_train_optimization_steps
)
global_step
=
0
global_step
=
0
if
args
.
do_train
:
if
args
.
do_train
:
...
@@ -420,7 +414,7 @@ def main():
...
@@ -420,7 +414,7 @@ def main():
logger
.
info
(
"***** Running training *****"
)
logger
.
info
(
"***** Running training *****"
)
logger
.
info
(
" Num examples = %d"
,
len
(
train_examples
))
logger
.
info
(
" Num examples = %d"
,
len
(
train_examples
))
logger
.
info
(
" Batch size = %d"
,
args
.
train_batch_size
)
logger
.
info
(
" Batch size = %d"
,
args
.
train_batch_size
)
logger
.
info
(
" Num steps = %d"
,
num_train_steps
)
logger
.
info
(
" Num steps = %d"
,
num_train_
optimization_
steps
)
all_input_ids
=
torch
.
tensor
(
select_field
(
train_features
,
'input_ids'
),
dtype
=
torch
.
long
)
all_input_ids
=
torch
.
tensor
(
select_field
(
train_features
,
'input_ids'
),
dtype
=
torch
.
long
)
all_input_mask
=
torch
.
tensor
(
select_field
(
train_features
,
'input_mask'
),
dtype
=
torch
.
long
)
all_input_mask
=
torch
.
tensor
(
select_field
(
train_features
,
'input_mask'
),
dtype
=
torch
.
long
)
all_segment_ids
=
torch
.
tensor
(
select_field
(
train_features
,
'segment_ids'
),
dtype
=
torch
.
long
)
all_segment_ids
=
torch
.
tensor
(
select_field
(
train_features
,
'segment_ids'
),
dtype
=
torch
.
long
)
...
@@ -457,10 +451,12 @@ def main():
...
@@ -457,10 +451,12 @@ def main():
else
:
else
:
loss
.
backward
()
loss
.
backward
()
if
(
step
+
1
)
%
args
.
gradient_accumulation_steps
==
0
:
if
(
step
+
1
)
%
args
.
gradient_accumulation_steps
==
0
:
# modify learning rate with special warm up BERT uses
if
args
.
fp16
:
lr_this_step
=
args
.
learning_rate
*
warmup_linear
(
global_step
/
t_total
,
args
.
warmup_proportion
)
# modify learning rate with special warm up BERT uses
for
param_group
in
optimizer
.
param_groups
:
# if args.fp16 is False, BertAdam is used that handles this automatically
param_group
[
'lr'
]
=
lr_this_step
lr_this_step
=
args
.
learning_rate
*
warmup_linear
(
global_step
/
num_train_optimization_steps
,
args
.
warmup_proportion
)
for
param_group
in
optimizer
.
param_groups
:
param_group
[
'lr'
]
=
lr_this_step
optimizer
.
step
()
optimizer
.
step
()
optimizer
.
zero_grad
()
optimizer
.
zero_grad
()
global_step
+=
1
global_step
+=
1
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment