Unverified Commit e7e9261a authored by Younes Belkada's avatar Younes Belkada Committed by GitHub
Browse files

[`Docs`] Fix un-rendered images (#25561)

fix un-rendered images
parent 8992589d
......@@ -30,7 +30,7 @@ The abstract from the paper is the following:
*Vision-Language Pre-training (VLP) has advanced the performance for many vision-language tasks.
However, most existing pre-trained models only excel in either understanding-based tasks or generation-based tasks. Furthermore, performance improvement has been largely achieved by scaling up the dataset with noisy image-text pairs collected from the web, which is a suboptimal source of supervision. In this paper, we propose BLIP, a new VLP framework which transfers flexibly to both vision-language understanding and generation tasks. BLIP effectively utilizes the noisy web data by bootstrapping the captions, where a captioner generates synthetic captions and a filter removes the noisy ones. We achieve state-of-the-art results on a wide range of vision-language tasks, such as image-text retrieval (+2.7% in average recall@1), image captioning (+2.8% in CIDEr), and VQA (+1.6% in VQA score). BLIP also demonstrates strong generalization ability when directly transferred to videolanguage tasks in a zero-shot manner. Code, models, and datasets are released.*
![BLIP.gif](https://s3.amazonaws.com/moonup/production/uploads/1670928184033-62441d1d9fdefb55a0b7d12c.gif)
![BLIP.gif](https://cdn-uploads.huggingface.co/production/uploads/1670928184033-62441d1d9fdefb55a0b7d12c.gif)
This model was contributed by [ybelkada](https://huggingface.co/ybelkada).
The original code can be found [here](https://github.com/salesforce/BLIP).
......
......@@ -104,12 +104,12 @@ Note that this feature can also be used in a multi GPU setup.
From the paper [`LLM.int8() : 8-bit Matrix Multiplication for Transformers at Scale`](https://arxiv.org/abs/2208.07339), we support Hugging Face integration for all models in the Hub with a few lines of code.
The method reduces `nn.Linear` size by 2 for `float16` and `bfloat16` weights and by 4 for `float32` weights, with close to no impact to the quality by operating on the outliers in half-precision.
![HFxbitsandbytes.png](https://s3.amazonaws.com/moonup/production/uploads/1659861207959-62441d1d9fdefb55a0b7d12c.png)
![HFxbitsandbytes.png](https://cdn-uploads.huggingface.co/production/uploads/1659861207959-62441d1d9fdefb55a0b7d12c.png)
Int8 mixed-precision matrix decomposition works by separating a matrix multiplication into two streams: (1) a systematic feature outlier stream matrix multiplied in fp16 (0.01%), (2) a regular stream of int8 matrix multiplication (99.9%). With this method, int8 inference with no predictive degradation is possible for very large models.
For more details regarding the method, check out the [paper](https://arxiv.org/abs/2208.07339) or our [blogpost about the integration](https://huggingface.co/blog/hf-bitsandbytes-integration).
![MixedInt8.gif](https://s3.amazonaws.com/moonup/production/uploads/1660567469965-62441d1d9fdefb55a0b7d12c.gif)
![MixedInt8.gif](https://cdn-uploads.huggingface.co/production/uploads/1660567469965-62441d1d9fdefb55a0b7d12c.gif)
Note, that you would require a GPU to run mixed-8bit models as the kernels have been compiled for GPUs only. Make sure that you have enough GPU memory to store the quarter (or half if your model weights are in half precision) of the model before using this feature.
Below are some notes to help you use this module, or follow the demos on [Google colab](#colab-demos).
......
......@@ -32,12 +32,12 @@ Nota che questa funzione può essere utilizzata anche nelle configurazioni multi
Dal paper [`LLM.int8() : 8-bit Matrix Multiplication for Transformers at Scale`](https://arxiv.org/abs/2208.07339), noi supportiamo l'integrazione di Hugging Face per tutti i modelli dell'Hub con poche righe di codice.
Il metodo `nn.Linear` riduce la dimensione di 2 per i pesi `float16` e `bfloat16` e di 4 per i pesi `float32`, con un impatto quasi nullo sulla qualità, operando sugli outlier in half-precision.
![HFxbitsandbytes.png](https://s3.amazonaws.com/moonup/production/uploads/1659861207959-62441d1d9fdefb55a0b7d12c.png)
![HFxbitsandbytes.png](https://cdn-uploads.huggingface.co/production/uploads/1659861207959-62441d1d9fdefb55a0b7d12c.png)
Il metodo Int8 mixed-precision matrix decomposition funziona separando la moltiplicazione tra matrici in due flussi: (1) una matrice di flusso di outlier di caratteristiche sistematiche moltiplicata in fp16, (2) in flusso regolare di moltiplicazione di matrici int8 (99,9%). Con questo metodo, è possibile effettutare inferenza int8 per modelli molto grandi senza degrado predittivo.
Per maggiori dettagli sul metodo, consultare il [paper](https://arxiv.org/abs/2208.07339) o il nostro [blogpost sull'integrazione](https://huggingface.co/blog/hf-bitsandbytes-integration).
![MixedInt8.gif](https://s3.amazonaws.com/moonup/production/uploads/1660567469965-62441d1d9fdefb55a0b7d12c.gif)
![MixedInt8.gif](https://cdn-uploads.huggingface.co/production/uploads/1660567469965-62441d1d9fdefb55a0b7d12c.gif)
Nota che è necessaria una GPU per eseguire modelli di tipo mixed-8bit, poiché i kernel sono stati compilati solo per le GPU. Prima di utilizzare questa funzione, assicurarsi di disporre di memoria sufficiente sulla GPU per memorizzare un quarto del modello (o la metà se i pesi del modello sono in mezza precisione).
Di seguito sono riportate alcune note per aiutarvi a utilizzare questo modulo, oppure seguite le dimostrazioni su [Google colab](#colab-demos).
......
# Testing mixed int8 quantization
![HFxbitsandbytes.png](https://s3.amazonaws.com/moonup/production/uploads/1660567705337-62441d1d9fdefb55a0b7d12c.png)
![HFxbitsandbytes.png](https://cdn-uploads.huggingface.co/production/uploads/1660567705337-62441d1d9fdefb55a0b7d12c.png)
The following is the recipe on how to effectively debug `bitsandbytes` integration on Hugging Face `transformers`.
......@@ -89,11 +89,11 @@ Here is an example of a badly configured CUDA installation:
`nvcc --version` gives:
![Screenshot 2022-08-15 at 15.12.23.png](https://s3.amazonaws.com/moonup/production/uploads/1660569220888-62441d1d9fdefb55a0b7d12c.png)
![Screenshot 2022-08-15 at 15.12.23.png](https://cdn-uploads.huggingface.co/production/uploads/1660569220888-62441d1d9fdefb55a0b7d12c.png)
which means that the detected CUDA version is 11.3 but `bitsandbytes` outputs:
![image.png](https://s3.amazonaws.com/moonup/production/uploads/1660569284243-62441d1d9fdefb55a0b7d12c.png)
![image.png](https://cdn-uploads.huggingface.co/production/uploads/1660569284243-62441d1d9fdefb55a0b7d12c.png)
First check:
......@@ -115,6 +115,6 @@ ls -l $LD_LIBRARY_PATH/libcudart.so
and you can see
![Screenshot 2022-08-15 at 15.12.33.png](https://s3.amazonaws.com/moonup/production/uploads/1660569176504-62441d1d9fdefb55a0b7d12c.png)
![Screenshot 2022-08-15 at 15.12.33.png](https://cdn-uploads.huggingface.co/production/uploads/1660569176504-62441d1d9fdefb55a0b7d12c.png)
If you see that the file is linked to the wrong CUDA version (here 10.2), find the correct location for `libcudart.so` (`find --name libcudart.so`) and replace the environment variable `LD_LIBRARY_PATH` with the one containing the correct `libcudart.so` file.
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment