Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
e715c78c
Unverified
Commit
e715c78c
authored
Feb 28, 2024
by
fxmarty
Committed by
GitHub
Feb 28, 2024
Browse files
Remove numpy usage from owlvit (#29326)
* remove numpy usage from owlvit * fix init owlv2 * style
parent
ad00c482
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
18 additions
and
16 deletions
+18
-16
src/transformers/models/owlv2/modeling_owlv2.py
src/transformers/models/owlv2/modeling_owlv2.py
+9
-8
src/transformers/models/owlvit/modeling_owlvit.py
src/transformers/models/owlvit/modeling_owlvit.py
+9
-8
No files found.
src/transformers/models/owlv2/modeling_owlv2.py
View file @
e715c78c
...
...
@@ -1311,6 +1311,8 @@ class Owlv2ForObjectDetection(Owlv2PreTrainedModel):
self
.
layer_norm
=
nn
.
LayerNorm
(
config
.
vision_config
.
hidden_size
,
eps
=
config
.
vision_config
.
layer_norm_eps
)
self
.
sigmoid
=
nn
.
Sigmoid
()
self
.
sqrt_num_patches
=
config
.
vision_config
.
image_size
//
config
.
vision_config
.
patch_size
# Copied from transformers.models.owlvit.modeling_owlvit.OwlViTForObjectDetection.normalize_grid_corner_coordinates
def
normalize_grid_corner_coordinates
(
self
,
feature_map
:
torch
.
FloatTensor
):
# Computes normalized xy corner coordinates from feature_map.
...
...
@@ -1320,6 +1322,7 @@ class Owlv2ForObjectDetection(Owlv2PreTrainedModel):
device
=
feature_map
.
device
num_patches
=
feature_map
.
shape
[
1
]
# TODO: Remove numpy usage.
box_coordinates
=
np
.
stack
(
np
.
meshgrid
(
np
.
arange
(
1
,
num_patches
+
1
),
np
.
arange
(
1
,
num_patches
+
1
)),
axis
=-
1
).
astype
(
np
.
float32
)
...
...
@@ -1432,8 +1435,7 @@ class Owlv2ForObjectDetection(Owlv2PreTrainedModel):
image_embeds
=
self
.
owlv2
.
vision_model
.
post_layernorm
(
last_hidden_state
)
# Resize class token
new_size
=
tuple
(
np
.
array
(
image_embeds
.
shape
)
-
np
.
array
((
0
,
1
,
0
)))
class_token_out
=
torch
.
broadcast_to
(
image_embeds
[:,
:
1
,
:],
new_size
)
class_token_out
=
torch
.
broadcast_to
(
image_embeds
[:,
:
1
,
:],
image_embeds
[:,
:
-
1
].
shape
)
# Merge image embedding with class tokens
image_embeds
=
image_embeds
[:,
1
:,
:]
*
class_token_out
...
...
@@ -1442,8 +1444,8 @@ class Owlv2ForObjectDetection(Owlv2PreTrainedModel):
# Resize to [batch_size, num_patches, num_patches, hidden_size]
new_size
=
(
image_embeds
.
shape
[
0
],
int
(
np
.
sqrt
(
image_embeds
.
shape
[
1
]))
,
int
(
np
.
sqrt
(
image_embeds
.
shape
[
1
]))
,
self
.
sqrt_num_patches
,
self
.
sqrt_num_patches
,
image_embeds
.
shape
[
-
1
],
)
image_embeds
=
image_embeds
.
reshape
(
new_size
)
...
...
@@ -1466,8 +1468,7 @@ class Owlv2ForObjectDetection(Owlv2PreTrainedModel):
image_embeds
=
self
.
owlv2
.
vision_model
.
post_layernorm
(
last_hidden_state
)
# Resize class token
new_size
=
tuple
(
np
.
array
(
image_embeds
.
shape
)
-
np
.
array
((
0
,
1
,
0
)))
class_token_out
=
torch
.
broadcast_to
(
image_embeds
[:,
:
1
,
:],
new_size
)
class_token_out
=
torch
.
broadcast_to
(
image_embeds
[:,
:
1
,
:],
image_embeds
[:,
:
-
1
].
shape
)
# Merge image embedding with class tokens
image_embeds
=
image_embeds
[:,
1
:,
:]
*
class_token_out
...
...
@@ -1476,8 +1477,8 @@ class Owlv2ForObjectDetection(Owlv2PreTrainedModel):
# Resize to [batch_size, num_patches, num_patches, hidden_size]
new_size
=
(
image_embeds
.
shape
[
0
],
int
(
np
.
sqrt
(
image_embeds
.
shape
[
1
]))
,
int
(
np
.
sqrt
(
image_embeds
.
shape
[
1
]))
,
self
.
sqrt_num_patches
,
self
.
sqrt_num_patches
,
image_embeds
.
shape
[
-
1
],
)
image_embeds
=
image_embeds
.
reshape
(
new_size
)
...
...
src/transformers/models/owlvit/modeling_owlvit.py
View file @
e715c78c
...
...
@@ -1292,6 +1292,8 @@ class OwlViTForObjectDetection(OwlViTPreTrainedModel):
self
.
layer_norm
=
nn
.
LayerNorm
(
config
.
vision_config
.
hidden_size
,
eps
=
config
.
vision_config
.
layer_norm_eps
)
self
.
sigmoid
=
nn
.
Sigmoid
()
self
.
sqrt_num_patches
=
config
.
vision_config
.
image_size
//
config
.
vision_config
.
patch_size
def
normalize_grid_corner_coordinates
(
self
,
feature_map
:
torch
.
FloatTensor
):
# Computes normalized xy corner coordinates from feature_map.
if
not
feature_map
.
ndim
==
4
:
...
...
@@ -1300,6 +1302,7 @@ class OwlViTForObjectDetection(OwlViTPreTrainedModel):
device
=
feature_map
.
device
num_patches
=
feature_map
.
shape
[
1
]
# TODO: Remove numpy usage.
box_coordinates
=
np
.
stack
(
np
.
meshgrid
(
np
.
arange
(
1
,
num_patches
+
1
),
np
.
arange
(
1
,
num_patches
+
1
)),
axis
=-
1
).
astype
(
np
.
float32
)
...
...
@@ -1394,8 +1397,7 @@ class OwlViTForObjectDetection(OwlViTPreTrainedModel):
image_embeds
=
self
.
owlvit
.
vision_model
.
post_layernorm
(
last_hidden_state
)
# Resize class token
new_size
=
tuple
(
np
.
array
(
image_embeds
.
shape
)
-
np
.
array
((
0
,
1
,
0
)))
class_token_out
=
torch
.
broadcast_to
(
image_embeds
[:,
:
1
,
:],
new_size
)
class_token_out
=
torch
.
broadcast_to
(
image_embeds
[:,
:
1
,
:],
image_embeds
[:,
:
-
1
].
shape
)
# Merge image embedding with class tokens
image_embeds
=
image_embeds
[:,
1
:,
:]
*
class_token_out
...
...
@@ -1404,8 +1406,8 @@ class OwlViTForObjectDetection(OwlViTPreTrainedModel):
# Resize to [batch_size, num_patches, num_patches, hidden_size]
new_size
=
(
image_embeds
.
shape
[
0
],
int
(
np
.
sqrt
(
image_embeds
.
shape
[
1
]))
,
int
(
np
.
sqrt
(
image_embeds
.
shape
[
1
]))
,
self
.
sqrt_num_patches
,
self
.
sqrt_num_patches
,
image_embeds
.
shape
[
-
1
],
)
image_embeds
=
image_embeds
.
reshape
(
new_size
)
...
...
@@ -1427,8 +1429,7 @@ class OwlViTForObjectDetection(OwlViTPreTrainedModel):
image_embeds
=
self
.
owlvit
.
vision_model
.
post_layernorm
(
last_hidden_state
)
# Resize class token
new_size
=
tuple
(
np
.
array
(
image_embeds
.
shape
)
-
np
.
array
((
0
,
1
,
0
)))
class_token_out
=
torch
.
broadcast_to
(
image_embeds
[:,
:
1
,
:],
new_size
)
class_token_out
=
torch
.
broadcast_to
(
image_embeds
[:,
:
1
,
:],
image_embeds
[:,
:
-
1
].
shape
)
# Merge image embedding with class tokens
image_embeds
=
image_embeds
[:,
1
:,
:]
*
class_token_out
...
...
@@ -1437,8 +1438,8 @@ class OwlViTForObjectDetection(OwlViTPreTrainedModel):
# Resize to [batch_size, num_patches, num_patches, hidden_size]
new_size
=
(
image_embeds
.
shape
[
0
],
int
(
np
.
sqrt
(
image_embeds
.
shape
[
1
]))
,
int
(
np
.
sqrt
(
image_embeds
.
shape
[
1
]))
,
self
.
sqrt_num_patches
,
self
.
sqrt_num_patches
,
image_embeds
.
shape
[
-
1
],
)
image_embeds
=
image_embeds
.
reshape
(
new_size
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment