Unverified Commit e58b3ec5 authored by Sam Shleifer's avatar Sam Shleifer Committed by GitHub
Browse files

add imports to examples (#3160)

parent 6ffe03a0
...@@ -913,7 +913,7 @@ class BartForConditionalGeneration(PretrainedBartModel): ...@@ -913,7 +913,7 @@ class BartForConditionalGeneration(PretrainedBartModel):
# Mask filling only works for bart-large # Mask filling only works for bart-large
from transformers import BartTokenizer, BartForConditionalGeneration from transformers import BartTokenizer, BartForConditionalGeneration
tokenizer = AutoTokenizer.from_pretrained('bart-large') tokenizer = BartTokenizer.from_pretrained('bart-large')
TXT = "My friends are <mask> but they eat too many carbs." TXT = "My friends are <mask> but they eat too many carbs."
model = BartForConditionalGeneration.from_pretrained('bart-large') model = BartForConditionalGeneration.from_pretrained('bart-large')
input_ids = tokenizer.batch_encode_plus([TXT], return_tensors='pt')['input_ids'] input_ids = tokenizer.batch_encode_plus([TXT], return_tensors='pt')['input_ids']
...@@ -1031,8 +1031,7 @@ class BartForConditionalGeneration(PretrainedBartModel): ...@@ -1031,8 +1031,7 @@ class BartForConditionalGeneration(PretrainedBartModel):
Examples:: Examples::
from transformers import BartTokenizer, BartForConditionalGeneration, BartConfig from transformers import BartTokenizer, BartForConditionalGeneration, BartConfig
# see ``examples/summarization/bart/evaluate_cnn.py`` for a longer example # see ``examples/summarization/bart/evaluate_cnn.py`` for a longer example
config = BartConfig(vocab_size=50264, output_past=True) # no mask_token_id model = BartForConditionalGeneration.from_pretrained('bart-large-cnn')
model = BartForConditionalGeneration.from_pretrained('bart-large-cnn', config=config)
tokenizer = BartTokenizer.from_pretrained('bart-large-cnn') tokenizer = BartTokenizer.from_pretrained('bart-large-cnn')
ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs." ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs."
inputs = tokenizer.batch_encode_plus([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors='pt') inputs = tokenizer.batch_encode_plus([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors='pt')
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment