Unverified Commit e3cb7a0b authored by Matt's avatar Matt Committed by GitHub
Browse files

Tensorflow QA example (#12252)



* New Tensorflow QA example!

* Style pass

* Updating README.md for the new example

* flake8 fixes

* Update examples/tensorflow/question-answering/README.md
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>
parent 4e9a6796
<!--- <!---
Copyright 2020 The HuggingFace Team. All rights reserved. Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License. you may not use this file except in compliance with the License.
...@@ -14,21 +14,42 @@ See the License for the specific language governing permissions and ...@@ -14,21 +14,42 @@ See the License for the specific language governing permissions and
limitations under the License. limitations under the License.
--> -->
## SQuAD with the Tensorflow Trainer # Question answering example
```bash This folder contains the `run_qa.py` script, demonstrating *question answering* with the 🤗 Transformers library.
python run_tf_squad.py \ For straightforward use-cases you may be able to use this script without modification, although we have also
--model_name_or_path bert-base-uncased \ included comments in the code to indicate areas that you may need to adapt to your own projects.
--output_dir model \
--max_seq_length 384 \ ### Usage notes
--num_train_epochs 2 \ Note that when contexts are long they may be split into multiple training cases, not all of which may contain
--per_gpu_train_batch_size 8 \ the answer span.
--per_gpu_eval_batch_size 16 \
--do_train \ As-is, the example script will train on SQuAD or any other question-answering dataset formatted the same way, and can handle user
--logging_dir logs \ inputs as well.
--logging_steps 10 \
--learning_rate 3e-5 \ ### Multi-GPU and TPU usage
--doc_stride 128
```
For the moment evaluation is not available in the Tensorflow Trainer only the training. By default, the script uses a `MirroredStrategy` and will use multiple GPUs effectively if they are available. TPUs
can also be used by passing the name of the TPU resource with the `--tpu` argument. There are some issues surrounding
these strategies and our models right now, which are most likely to appear in the evaluation/prediction steps. We're
actively working on better support for multi-GPU and TPU training in TF, but if you encounter problems a quick
workaround is to train in the multi-GPU or TPU context and then perform predictions outside of it.
### Memory usage and data loading
One thing to note is that all data is loaded into memory in this script. Most question answering datasets are small
enough that this is not an issue, but if you have a very large dataset you will need to modify the script to handle
data streaming. This is particularly challenging for TPUs, given the stricter requirements and the sheer volume of data
required to keep them fed. A full explanation of all the possible pitfalls is a bit beyond this example script and
README, but for more information you can see the 'Input Datasets' section of
[this document](https://www.tensorflow.org/guide/tpu).
### Example command
```
python run_qa.py \
--model_name_or_path distilbert-base-cased \
--output_dir output \
--dataset_name squad \
--do_train \
--do_eval \
```
This diff is collapsed.
#!/usr/bin/env python
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Fine-tuning the library models for question-answering."""
import logging
import os
from dataclasses import dataclass, field
from typing import Optional
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
HfArgumentParser,
TFAutoModelForQuestionAnswering,
TFTrainer,
TFTrainingArguments,
squad_convert_examples_to_features,
)
from transformers.data.processors.squad import SquadV1Processor, SquadV2Processor
from transformers.utils import logging as hf_logging
hf_logging.set_verbosity_info()
hf_logging.enable_default_handler()
hf_logging.enable_explicit_format()
logger = logging.getLogger(__name__)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
use_fast: bool = field(default=False, metadata={"help": "Set this flag to use fast tokenization."})
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
data_dir: Optional[str] = field(
default=None, metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."}
)
use_tfds: Optional[bool] = field(default=True, metadata={"help": "If TFDS should be used or not."})
max_seq_length: int = field(
default=128,
metadata={
"help": "The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
},
)
doc_stride: int = field(
default=128,
metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."},
)
max_query_length: int = field(
default=64,
metadata={
"help": "The maximum number of tokens for the question. Questions longer than this will "
"be truncated to this length."
},
)
max_answer_length: int = field(
default=30,
metadata={
"help": "The maximum length of an answer that can be generated. This is needed because the start "
"and end predictions are not conditioned on one another."
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
version_2_with_negative: bool = field(
default=False, metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."}
)
null_score_diff_threshold: float = field(
default=0.0, metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."}
)
n_best_size: int = field(
default=20, metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."}
)
lang_id: int = field(
default=0,
metadata={
"help": "language id of input for language-specific xlm models (see tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)"
},
)
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(
f"n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1)}, "
f"16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
# Prepare Question-Answering task
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast,
)
with training_args.strategy.scope():
model = TFAutoModelForQuestionAnswering.from_pretrained(
model_args.model_name_or_path,
from_pt=bool(".bin" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
)
# Get datasets
if data_args.use_tfds:
if data_args.version_2_with_negative:
logger.warning("tensorflow_datasets does not handle version 2 of SQuAD. Switch to version 1 automatically")
try:
import tensorflow_datasets as tfds
except ImportError:
raise ImportError("If not data_dir is specified, tensorflow_datasets needs to be installed.")
tfds_examples = tfds.load("squad", data_dir=data_args.data_dir)
train_examples = (
SquadV1Processor().get_examples_from_dataset(tfds_examples, evaluate=False)
if training_args.do_train
else None
)
eval_examples = (
SquadV1Processor().get_examples_from_dataset(tfds_examples, evaluate=True)
if training_args.do_eval
else None
)
else:
processor = SquadV2Processor() if data_args.version_2_with_negative else SquadV1Processor()
train_examples = processor.get_train_examples(data_args.data_dir) if training_args.do_train else None
eval_examples = processor.get_dev_examples(data_args.data_dir) if training_args.do_eval else None
train_dataset = (
squad_convert_examples_to_features(
examples=train_examples,
tokenizer=tokenizer,
max_seq_length=data_args.max_seq_length,
doc_stride=data_args.doc_stride,
max_query_length=data_args.max_query_length,
is_training=True,
return_dataset="tf",
)
if training_args.do_train
else None
)
train_dataset = train_dataset.apply(tf.data.experimental.assert_cardinality(len(train_examples)))
eval_dataset = (
squad_convert_examples_to_features(
examples=eval_examples,
tokenizer=tokenizer,
max_seq_length=data_args.max_seq_length,
doc_stride=data_args.doc_stride,
max_query_length=data_args.max_query_length,
is_training=False,
return_dataset="tf",
)
if training_args.do_eval
else None
)
eval_dataset = eval_dataset.apply(tf.data.experimental.assert_cardinality(len(eval_examples)))
# Initialize our Trainer
trainer = TFTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
)
# Training
if training_args.do_train:
trainer.train()
trainer.save_model()
tokenizer.save_pretrained(training_args.output_dir)
if __name__ == "__main__":
main()
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment