Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
e215e6de
Unverified
Commit
e215e6de
authored
Feb 06, 2023
by
Matthijs Hollemans
Committed by
GitHub
Feb 06, 2023
Browse files
make SpeechT5 doc examples deterministic (#21470)
* make doc examples deterministic * add IGNORE_RESULT
parent
182afb7d
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
14 additions
and
6 deletions
+14
-6
src/transformers/models/speecht5/modeling_speecht5.py
src/transformers/models/speecht5/modeling_speecht5.py
+14
-6
No files found.
src/transformers/models/speecht5/modeling_speecht5.py
View file @
e215e6de
...
...
@@ -2296,7 +2296,9 @@ class SpeechT5ForSpeechToText(SpeechT5PreTrainedModel):
>>> from transformers import SpeechT5Processor, SpeechT5ForSpeechToText
>>> from datasets import load_dataset
>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
>>> dataset = load_dataset(
... "hf-internal-testing/librispeech_asr_demo", "clean", split="validation"
... ) # doctest: +IGNORE_RESULT
>>> dataset = dataset.sort("id")
>>> sampling_rate = dataset.features["audio"].sampling_rate
...
...
@@ -2570,7 +2572,7 @@ class SpeechT5ForTextToSpeech(SpeechT5PreTrainedModel):
Example:
```python
>>> from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
>>> from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
, set_seed
>>> import torch
>>> processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
...
...
@@ -2580,10 +2582,12 @@ class SpeechT5ForTextToSpeech(SpeechT5PreTrainedModel):
>>> inputs = processor(text="Hello, my dog is cute", return_tensors="pt")
>>> speaker_embeddings = torch.zeros((1, 512)) # or load xvectors from a file
>>> set_seed(555) # make deterministic
>>> # generate speech
>>> speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
>>> speech.shape
torch.Size([1
5872
])
torch.Size([1
6384
])
```
"""
return_dict
=
return_dict
if
return_dict
is
not
None
else
self
.
config
.
use_return_dict
...
...
@@ -2764,11 +2768,13 @@ class SpeechT5ForSpeechToSpeech(SpeechT5PreTrainedModel):
Example:
```python
>>> from transformers import SpeechT5Processor, SpeechT5ForSpeechToSpeech, SpeechT5HifiGan
>>> from transformers import SpeechT5Processor, SpeechT5ForSpeechToSpeech, SpeechT5HifiGan
, set_seed
>>> from datasets import load_dataset
>>> import torch
>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
>>> dataset = load_dataset(
... "hf-internal-testing/librispeech_asr_demo", "clean", split="validation"
... ) # doctest: +IGNORE_RESULT
>>> dataset = dataset.sort("id")
>>> sampling_rate = dataset.features["audio"].sampling_rate
...
...
@@ -2781,10 +2787,12 @@ class SpeechT5ForSpeechToSpeech(SpeechT5PreTrainedModel):
>>> speaker_embeddings = torch.zeros((1, 512)) # or load xvectors from a file
>>> set_seed(555) # make deterministic
>>> # generate speech
>>> speech = model.generate_speech(inputs["input_values"], speaker_embeddings, vocoder=vocoder)
>>> speech.shape
torch.Size([77
312
])
torch.Size([77
824
])
```
"""
return_dict
=
return_dict
if
return_dict
is
not
None
else
self
.
config
.
use_return_dict
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment