Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
e211785a
You need to sign in or sign up before continuing.
Commit
e211785a
authored
May 02, 2019
by
thomwolf
Browse files
extract attention weights from GPT
parent
db98a4a4
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
38 additions
and
10 deletions
+38
-10
pytorch_pretrained_bert/modeling_openai.py
pytorch_pretrained_bert/modeling_openai.py
+38
-10
No files found.
pytorch_pretrained_bert/modeling_openai.py
View file @
e211785a
...
@@ -253,7 +253,7 @@ class Conv1D(nn.Module):
...
@@ -253,7 +253,7 @@ class Conv1D(nn.Module):
class
Attention
(
nn
.
Module
):
class
Attention
(
nn
.
Module
):
def
__init__
(
self
,
nx
,
n_ctx
,
config
,
scale
=
False
):
def
__init__
(
self
,
nx
,
n_ctx
,
config
,
scale
=
False
,
output_attentions
=
False
):
super
(
Attention
,
self
).
__init__
()
super
(
Attention
,
self
).
__init__
()
n_state
=
nx
# in Attention: n_state=768 (nx=n_embd)
n_state
=
nx
# in Attention: n_state=768 (nx=n_embd)
# [switch nx => n_state from Block to Attention to keep identical to TF implem]
# [switch nx => n_state from Block to Attention to keep identical to TF implem]
...
@@ -262,6 +262,7 @@ class Attention(nn.Module):
...
@@ -262,6 +262,7 @@ class Attention(nn.Module):
self
.
n_head
=
config
.
n_head
self
.
n_head
=
config
.
n_head
self
.
split_size
=
n_state
self
.
split_size
=
n_state
self
.
scale
=
scale
self
.
scale
=
scale
self
.
output_attentions
=
output_attentions
self
.
c_attn
=
Conv1D
(
n_state
*
3
,
1
,
nx
)
self
.
c_attn
=
Conv1D
(
n_state
*
3
,
1
,
nx
)
self
.
c_proj
=
Conv1D
(
n_state
,
1
,
nx
)
self
.
c_proj
=
Conv1D
(
n_state
,
1
,
nx
)
self
.
attn_dropout
=
nn
.
Dropout
(
config
.
attn_pdrop
)
self
.
attn_dropout
=
nn
.
Dropout
(
config
.
attn_pdrop
)
...
@@ -278,6 +279,8 @@ class Attention(nn.Module):
...
@@ -278,6 +279,8 @@ class Attention(nn.Module):
w
=
nn
.
Softmax
(
dim
=-
1
)(
w
)
w
=
nn
.
Softmax
(
dim
=-
1
)(
w
)
w
=
self
.
attn_dropout
(
w
)
w
=
self
.
attn_dropout
(
w
)
if
self
.
output_attentions
:
return
w
,
torch
.
matmul
(
w
,
v
)
return
torch
.
matmul
(
w
,
v
)
return
torch
.
matmul
(
w
,
v
)
def
merge_heads
(
self
,
x
):
def
merge_heads
(
self
,
x
):
...
@@ -300,9 +303,13 @@ class Attention(nn.Module):
...
@@ -300,9 +303,13 @@ class Attention(nn.Module):
key
=
self
.
split_heads
(
key
,
k
=
True
)
key
=
self
.
split_heads
(
key
,
k
=
True
)
value
=
self
.
split_heads
(
value
)
value
=
self
.
split_heads
(
value
)
a
=
self
.
_attn
(
query
,
key
,
value
)
a
=
self
.
_attn
(
query
,
key
,
value
)
if
self
.
output_attentions
:
attentions
,
a
=
a
a
=
self
.
merge_heads
(
a
)
a
=
self
.
merge_heads
(
a
)
a
=
self
.
c_proj
(
a
)
a
=
self
.
c_proj
(
a
)
a
=
self
.
resid_dropout
(
a
)
a
=
self
.
resid_dropout
(
a
)
if
self
.
output_attentions
:
return
attentions
,
a
return
a
return
a
...
@@ -322,19 +329,24 @@ class MLP(nn.Module):
...
@@ -322,19 +329,24 @@ class MLP(nn.Module):
class
Block
(
nn
.
Module
):
class
Block
(
nn
.
Module
):
def
__init__
(
self
,
n_ctx
,
config
,
scale
=
False
):
def
__init__
(
self
,
n_ctx
,
config
,
scale
=
False
,
output_attentions
=
False
):
super
(
Block
,
self
).
__init__
()
super
(
Block
,
self
).
__init__
()
nx
=
config
.
n_embd
nx
=
config
.
n_embd
self
.
attn
=
Attention
(
nx
,
n_ctx
,
config
,
scale
)
self
.
output_attentions
=
output_attentions
self
.
attn
=
Attention
(
nx
,
n_ctx
,
config
,
scale
,
output_attentions
)
self
.
ln_1
=
LayerNorm
(
nx
,
eps
=
config
.
layer_norm_epsilon
)
self
.
ln_1
=
LayerNorm
(
nx
,
eps
=
config
.
layer_norm_epsilon
)
self
.
mlp
=
MLP
(
4
*
nx
,
config
)
self
.
mlp
=
MLP
(
4
*
nx
,
config
)
self
.
ln_2
=
LayerNorm
(
nx
,
eps
=
config
.
layer_norm_epsilon
)
self
.
ln_2
=
LayerNorm
(
nx
,
eps
=
config
.
layer_norm_epsilon
)
def
forward
(
self
,
x
):
def
forward
(
self
,
x
):
a
=
self
.
attn
(
x
)
a
=
self
.
attn
(
x
)
if
self
.
output_attentions
:
attentions
,
a
=
a
n
=
self
.
ln_1
(
x
+
a
)
n
=
self
.
ln_1
(
x
+
a
)
m
=
self
.
mlp
(
n
)
m
=
self
.
mlp
(
n
)
h
=
self
.
ln_2
(
n
+
m
)
h
=
self
.
ln_2
(
n
+
m
)
if
self
.
output_attentions
:
return
attentions
,
h
return
h
return
h
...
@@ -591,12 +603,13 @@ class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
...
@@ -591,12 +603,13 @@ class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
```
```
"""
"""
def
__init__
(
self
,
config
):
def
__init__
(
self
,
config
,
output_attentions
=
False
):
super
(
OpenAIGPTModel
,
self
).
__init__
(
config
)
super
(
OpenAIGPTModel
,
self
).
__init__
(
config
)
self
.
output_attentions
=
output_attentions
self
.
tokens_embed
=
nn
.
Embedding
(
config
.
total_tokens_embeddings
,
config
.
n_embd
)
self
.
tokens_embed
=
nn
.
Embedding
(
config
.
total_tokens_embeddings
,
config
.
n_embd
)
self
.
positions_embed
=
nn
.
Embedding
(
config
.
n_positions
,
config
.
n_embd
)
self
.
positions_embed
=
nn
.
Embedding
(
config
.
n_positions
,
config
.
n_embd
)
self
.
drop
=
nn
.
Dropout
(
config
.
embd_pdrop
)
self
.
drop
=
nn
.
Dropout
(
config
.
embd_pdrop
)
block
=
Block
(
config
.
n_ctx
,
config
,
scale
=
True
)
block
=
Block
(
config
.
n_ctx
,
config
,
scale
=
True
,
output_attentions
=
output_attentions
)
self
.
h
=
nn
.
ModuleList
([
copy
.
deepcopy
(
block
)
for
_
in
range
(
config
.
n_layer
)])
self
.
h
=
nn
.
ModuleList
([
copy
.
deepcopy
(
block
)
for
_
in
range
(
config
.
n_layer
)])
self
.
apply
(
self
.
init_weights
)
self
.
apply
(
self
.
init_weights
)
...
@@ -639,9 +652,16 @@ class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
...
@@ -639,9 +652,16 @@ class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
# Add the position information to the input embeddings
# Add the position information to the input embeddings
# h = e.sum(dim=2)
# h = e.sum(dim=2)
hidden_states
=
inputs_embeds
+
position_embeds
+
token_type_embeds
hidden_states
=
inputs_embeds
+
position_embeds
+
token_type_embeds
all_attentions
=
[]
for
block
in
self
.
h
:
for
block
in
self
.
h
:
hidden_states
=
block
(
hidden_states
)
if
self
.
output_attentions
:
attentions
,
hidden_states
=
block
(
hidden_states
)
all_attentions
.
append
(
attentions
)
else
:
hidden_states
=
block
(
hidden_states
)
output_shape
=
input_shape
+
(
hidden_states
.
size
(
-
1
),)
output_shape
=
input_shape
+
(
hidden_states
.
size
(
-
1
),)
if
self
.
output_attentions
:
return
all_attentions
,
hidden_states
.
view
(
*
output_shape
)
return
hidden_states
.
view
(
*
output_shape
)
return
hidden_states
.
view
(
*
output_shape
)
...
@@ -701,9 +721,9 @@ class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
...
@@ -701,9 +721,9 @@ class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
```
```
"""
"""
def
__init__
(
self
,
config
):
def
__init__
(
self
,
config
,
output_attentions
=
False
):
super
(
OpenAIGPTLMHeadModel
,
self
).
__init__
(
config
)
super
(
OpenAIGPTLMHeadModel
,
self
).
__init__
(
config
)
self
.
transformer
=
OpenAIGPTModel
(
config
)
self
.
transformer
=
OpenAIGPTModel
(
config
,
output_attentions
=
output_attentions
)
self
.
lm_head
=
OpenAIGPTLMHead
(
self
.
transformer
.
tokens_embed
.
weight
,
config
)
self
.
lm_head
=
OpenAIGPTLMHead
(
self
.
transformer
.
tokens_embed
.
weight
,
config
)
self
.
apply
(
self
.
init_weights
)
self
.
apply
(
self
.
init_weights
)
...
@@ -716,6 +736,8 @@ class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
...
@@ -716,6 +736,8 @@ class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
def
forward
(
self
,
input_ids
,
position_ids
=
None
,
token_type_ids
=
None
,
lm_labels
=
None
):
def
forward
(
self
,
input_ids
,
position_ids
=
None
,
token_type_ids
=
None
,
lm_labels
=
None
):
hidden_states
=
self
.
transformer
(
input_ids
,
position_ids
,
token_type_ids
)
hidden_states
=
self
.
transformer
(
input_ids
,
position_ids
,
token_type_ids
)
if
self
.
transformer
.
output_attentions
:
all_attentions
,
hidden_states
=
hidden_states
lm_logits
=
self
.
lm_head
(
hidden_states
)
lm_logits
=
self
.
lm_head
(
hidden_states
)
if
lm_labels
is
not
None
:
if
lm_labels
is
not
None
:
# Shift so that tokens < n predict n
# Shift so that tokens < n predict n
...
@@ -726,6 +748,8 @@ class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
...
@@ -726,6 +748,8 @@ class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
loss
=
loss_fct
(
shift_logits
.
view
(
-
1
,
shift_logits
.
size
(
-
1
)),
loss
=
loss_fct
(
shift_logits
.
view
(
-
1
,
shift_logits
.
size
(
-
1
)),
shift_labels
.
view
(
-
1
))
shift_labels
.
view
(
-
1
))
return
loss
return
loss
if
self
.
transformer
.
output_attentions
:
return
all_attentions
,
lm_logits
return
lm_logits
return
lm_logits
...
@@ -790,9 +814,9 @@ class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
...
@@ -790,9 +814,9 @@ class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
```
```
"""
"""
def
__init__
(
self
,
config
):
def
__init__
(
self
,
config
,
output_attentions
=
False
):
super
(
OpenAIGPTDoubleHeadsModel
,
self
).
__init__
(
config
)
super
(
OpenAIGPTDoubleHeadsModel
,
self
).
__init__
(
config
)
self
.
transformer
=
OpenAIGPTModel
(
config
)
self
.
transformer
=
OpenAIGPTModel
(
config
,
output_attentions
=
output_attentions
)
self
.
lm_head
=
OpenAIGPTLMHead
(
self
.
transformer
.
tokens_embed
.
weight
,
config
)
self
.
lm_head
=
OpenAIGPTLMHead
(
self
.
transformer
.
tokens_embed
.
weight
,
config
)
self
.
multiple_choice_head
=
OpenAIGPTMultipleChoiceHead
(
config
)
self
.
multiple_choice_head
=
OpenAIGPTMultipleChoiceHead
(
config
)
self
.
apply
(
self
.
init_weights
)
self
.
apply
(
self
.
init_weights
)
...
@@ -806,6 +830,8 @@ class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
...
@@ -806,6 +830,8 @@ class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
def
forward
(
self
,
input_ids
,
mc_token_ids
,
lm_labels
=
None
,
mc_labels
=
None
,
token_type_ids
=
None
,
position_ids
=
None
):
def
forward
(
self
,
input_ids
,
mc_token_ids
,
lm_labels
=
None
,
mc_labels
=
None
,
token_type_ids
=
None
,
position_ids
=
None
):
hidden_states
=
self
.
transformer
(
input_ids
,
position_ids
,
token_type_ids
)
hidden_states
=
self
.
transformer
(
input_ids
,
position_ids
,
token_type_ids
)
if
self
.
transformer
.
output_attentions
:
all_attentions
,
hidden_states
=
hidden_states
lm_logits
=
self
.
lm_head
(
hidden_states
)
lm_logits
=
self
.
lm_head
(
hidden_states
)
mc_logits
=
self
.
multiple_choice_head
(
hidden_states
,
mc_token_ids
)
mc_logits
=
self
.
multiple_choice_head
(
hidden_states
,
mc_token_ids
)
losses
=
[]
losses
=
[]
...
@@ -819,4 +845,6 @@ class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
...
@@ -819,4 +845,6 @@ class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
losses
.
append
(
loss_fct
(
mc_logits
.
view
(
-
1
,
mc_logits
.
size
(
-
1
)),
mc_labels
.
view
(
-
1
)))
losses
.
append
(
loss_fct
(
mc_logits
.
view
(
-
1
,
mc_logits
.
size
(
-
1
)),
mc_labels
.
view
(
-
1
)))
if
losses
:
if
losses
:
return
losses
return
losses
if
self
.
transformer
.
output_attentions
:
return
all_attentions
,
lm_logits
,
mc_logits
return
lm_logits
,
mc_logits
return
lm_logits
,
mc_logits
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment