Commit e179c554 authored by Anish Moorthy's avatar Anish Moorthy
Browse files

Add docs for from_pretrained functions, rename return_unused_args

parent 490ebbdc
......@@ -91,21 +91,33 @@ class PretrainedConfig(object):
**cache_dir**: (`optional`) string:
Path to a directory in which a downloaded pre-trained model
configuration should be cached if the standard cache should not be used.
**return_unused_kwargs**: (`optional`) bool:
- If False, then this function returns just the final configuration object.
- If True, then this functions returns a tuple `(config, unused_kwargs)` where `unused_kwargs`
is a dictionary consisting of the key/value pairs whose keys are not configuration attributes:
ie the part of kwargs which has not been used to update `config` and is otherwise ignored.
**kwargs**: (`optional`) dict:
Dictionnary of key, values to update the configuration object after loading.
Can be used to override selected configuration parameters.
Dictionary of key/value pairs with which to update the configuration object after loading.
- The values in kwargs of any keys which are configuration attributes will be used
to override the loaded values.
- Behavior concerning key/value pairs whose keys are *not* configuration attributes is controlled
by the `return_unused_kwargs` keyword parameter.
Examples::
>>> config = BertConfig.from_pretrained('bert-base-uncased') # Download configuration from S3 and cache.
>>> config = BertConfig.from_pretrained('./test/saved_model/') # E.g. config (or model) was saved using `save_pretrained('./test/saved_model/')`
>>> config = BertConfig.from_pretrained('./test/saved_model/my_configuration.json')
>>> config = BertConfig.from_pretrained('bert-base-uncased', output_attention=True)
>>> config = BertConfig.from_pretrained('bert-base-uncased', output_attention=True, foo=False)
>>> assert config.output_attention == True
>>> config, unused_kwargs = BertConfig.from_pretrained('bert-base-uncased', output_attention=True,
>>> foo=False, return_unused_kwargs=True)
>>> assert config.output_attention == True
>>> assert unused_kwargs == {'foo': False}
"""
cache_dir = kwargs.pop('cache_dir', None)
return_unused_args = kwargs.pop('return_unused_args', False)
return_unused_kwargs = kwargs.pop('return_unused_kwargs', False)
if pretrained_model_name_or_path in cls.pretrained_config_archive_map:
config_file = cls.pretrained_config_archive_map[pretrained_model_name_or_path]
......@@ -149,7 +161,7 @@ class PretrainedConfig(object):
kwargs.pop(key, None)
logger.info("Model config %s", config)
if return_unused_args:
if return_unused_kwargs:
return config, kwargs
else:
return config
......@@ -326,6 +338,8 @@ class PreTrainedModel(nn.Module):
provided as `config` argument. This loading option is slower than converting the TensorFlow
checkpoint in a PyTorch model using the provided conversion scripts and loading
the PyTorch model afterwards.
**model_args**: (`optional`) Sequence:
All remaning positional arguments will be passed to the underlying model's __init__ function
**config**: an optional configuration for the model to use instead of an automatically loaded configuation.
Configuration can be automatically loaded when:
- the model is a model provided by the library (loaded with a `shortcut name` of a pre-trained model), or
......@@ -340,17 +354,18 @@ class PreTrainedModel(nn.Module):
configuration should be cached if the standard cache should not be used.
**output_loading_info**: (`optional`) boolean:
Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.
**model_args**: (`optional`) Sequence:
All positional arguments will be passed to the underlying model's __init__ function
**kwargs**: (`optional`) dict:
Dictionary of key, values to update the configuration object after loading.
Can be used to override selected configuration parameters. E.g. ``output_attention=True``.
If config is None, then **kwargs will be passed to the model.
If said key is *not* present, then kwargs will be used to
override any keys shared with the default configuration for the
given pretrained_model_name_or_path, and only the unshared
key/value pairs will be passed to the model.
- If a configuration is provided with `config`, **kwargs will be directly passed
to the underlying model's __init__ method.
- If a configuration is not provided, **kwargs will be first passed to the pretrained
model configuration class loading function (`PretrainedConfig.from_pretrained`).
Each key of **kwargs that corresponds to a configuration attribute
will be used to override said attribute with the supplied **kwargs value.
Remaining keys that do not correspond to any configuration attribute will
be passed to the underlying model's __init__ function.
Examples::
......@@ -373,7 +388,7 @@ class PreTrainedModel(nn.Module):
if config is None:
config, model_kwargs = cls.config_class.from_pretrained(
pretrained_model_name_or_path, *model_args,
cache_dir=cache_dir, return_unused_args=True,
cache_dir=cache_dir, return_unused_kwargs=True,
**kwargs
)
else:
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment