Unverified Commit e15f0d73 authored by Joao Gante's avatar Joao Gante Committed by GitHub
Browse files

OPT: Fix batched generation with FLAX (#21150)

* Fix Flax OPT numerical masking

* re-enable test

* add fix to bart and reintroduce copied from in opt
parent f4786d7f
...@@ -371,7 +371,7 @@ class FlaxBartAttention(nn.Module): ...@@ -371,7 +371,7 @@ class FlaxBartAttention(nn.Module):
attention_bias = lax.select( attention_bias = lax.select(
attention_mask > 0, attention_mask > 0,
jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(attention_mask.shape, float("-inf")).astype(self.dtype), jnp.full(attention_mask.shape, -1e9).astype(self.dtype),
) )
else: else:
attention_bias = None attention_bias = None
......
...@@ -359,7 +359,7 @@ class FlaxBlenderbotAttention(nn.Module): ...@@ -359,7 +359,7 @@ class FlaxBlenderbotAttention(nn.Module):
attention_bias = lax.select( attention_bias = lax.select(
attention_mask > 0, attention_mask > 0,
jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(attention_mask.shape, float("-inf")).astype(self.dtype), jnp.full(attention_mask.shape, -1e9).astype(self.dtype),
) )
else: else:
attention_bias = None attention_bias = None
......
...@@ -371,7 +371,7 @@ class FlaxBlenderbotSmallAttention(nn.Module): ...@@ -371,7 +371,7 @@ class FlaxBlenderbotSmallAttention(nn.Module):
attention_bias = lax.select( attention_bias = lax.select(
attention_mask > 0, attention_mask > 0,
jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(attention_mask.shape, float("-inf")).astype(self.dtype), jnp.full(attention_mask.shape, -1e9).astype(self.dtype),
) )
else: else:
attention_bias = None attention_bias = None
......
...@@ -381,7 +381,7 @@ class FlaxMarianAttention(nn.Module): ...@@ -381,7 +381,7 @@ class FlaxMarianAttention(nn.Module):
attention_bias = lax.select( attention_bias = lax.select(
attention_mask > 0, attention_mask > 0,
jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(attention_mask.shape, float("-inf")).astype(self.dtype), jnp.full(attention_mask.shape, -1e9).astype(self.dtype),
) )
else: else:
attention_bias = None attention_bias = None
......
...@@ -383,7 +383,7 @@ class FlaxMBartAttention(nn.Module): ...@@ -383,7 +383,7 @@ class FlaxMBartAttention(nn.Module):
attention_bias = lax.select( attention_bias = lax.select(
attention_mask > 0, attention_mask > 0,
jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(attention_mask.shape, float("-inf")).astype(self.dtype), jnp.full(attention_mask.shape, -1e9).astype(self.dtype),
) )
else: else:
attention_bias = None attention_bias = None
......
...@@ -245,7 +245,7 @@ class FlaxOPTAttention(nn.Module): ...@@ -245,7 +245,7 @@ class FlaxOPTAttention(nn.Module):
attention_bias = lax.select( attention_bias = lax.select(
attention_mask > 0, attention_mask > 0,
jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(attention_mask.shape, float("-inf")).astype(self.dtype), jnp.full(attention_mask.shape, -1e9).astype(self.dtype),
) )
else: else:
attention_bias = None attention_bias = None
......
...@@ -375,7 +375,7 @@ class FlaxPegasusAttention(nn.Module): ...@@ -375,7 +375,7 @@ class FlaxPegasusAttention(nn.Module):
attention_bias = lax.select( attention_bias = lax.select(
attention_mask > 0, attention_mask > 0,
jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(attention_mask.shape, float("-inf")).astype(self.dtype), jnp.full(attention_mask.shape, -1e9).astype(self.dtype),
) )
else: else:
attention_bias = None attention_bias = None
......
...@@ -364,43 +364,39 @@ class FlaxOPTGenerationTest(unittest.TestCase): ...@@ -364,43 +364,39 @@ class FlaxOPTGenerationTest(unittest.TestCase):
self.assertIsNotNone(output_string, EXPECTED_OUTPUTS) self.assertIsNotNone(output_string, EXPECTED_OUTPUTS)
# TODO fix in the following PR def test_batch_generation(self):
# def test_batch_generation(self): model_id = "facebook/opt-350m"
# model_id = "facebook/opt-350m"
tokenizer = GPT2Tokenizer.from_pretrained(model_id)
# tokenizer = GPT2Tokenizer.from_pretrained(model_id) model = FlaxOPTForCausalLM.from_pretrained(model_id)
# model = FlaxOPTForCausalLM.from_pretrained(model_id)
tokenizer.padding_side = "left"
# tokenizer.padding_side = "left"
# use different length sentences to test batching
# # use different length sentences to test batching sentences = [
# sentences = [ "Hello, my dog is a little",
# "Hello, my dog is a little", "Today, I",
# "Today, I", ]
# ]
inputs = tokenizer(sentences, return_tensors="jax", padding=True)
# inputs = tokenizer(sentences, return_tensors="jax", padding=True) input_ids = inputs["input_ids"]
# input_ids = inputs["input_ids"]
outputs = model.generate(input_ids=input_ids, attention_mask=inputs["attention_mask"], trace=False)
# outputs = model.generate(input_ids=input_ids, attention_mask=inputs["attention_mask"], trace=False)
inputs_non_padded = tokenizer(sentences[0], return_tensors="jax").input_ids
# inputs_non_padded = tokenizer(sentences[0], return_tensors="jax").input_ids output_non_padded = model.generate(input_ids=inputs_non_padded)
# output_non_padded = model.generate(input_ids=inputs_non_padded)
num_paddings = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].sum()
# num_paddings = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].sum() inputs_padded = tokenizer(sentences[1], return_tensors="jax").input_ids
# inputs_padded = tokenizer(sentences[1], return_tensors="jax").input_ids output_padded = model.generate(input_ids=inputs_padded, max_length=model.config.max_length - num_paddings)
# output_padded = model.generate(input_ids=inputs_padded, max_length=model.config.max_length - num_paddings)
batch_out_sentence = tokenizer.batch_decode(outputs[0], skip_special_tokens=True)
# batch_out_sentence = tokenizer.batch_decode(outputs[0], skip_special_tokens=True) non_padded_sentence = tokenizer.decode(output_non_padded[0][0], skip_special_tokens=True)
# non_padded_sentence = tokenizer.decode(output_non_padded[0][0], skip_special_tokens=True) padded_sentence = tokenizer.decode(output_padded[0][0], skip_special_tokens=True)
# padded_sentence = tokenizer.decode(output_padded[0][0], skip_special_tokens=True)
expected_output_sentence = [
# expected_output_sentence = [ "Hello, my dog is a little bit of a dork.\nI'm a little bit",
# "Hello, my dog is a little bit of a dork.\nI'm a little bit", "Today, I was in the middle of a conversation with a friend about the",
# "Today, I<s><s><s><s><s><s><s><s><s><s><s><s>" ]
# # TODO fix this test in next PR self.assertListEqual(expected_output_sentence, batch_out_sentence)
# # "Today, I was in the middle of a conversation with a friend about the", self.assertListEqual(batch_out_sentence, [non_padded_sentence, padded_sentence])
# ]
# self.assertListEqual(expected_output_sentence, batch_out_sentence)
# # TODO outputs will be similar, fix in next PR
# self.assertListEqual(batch_out_sentence, [non_padded_sentence, padded_sentence])
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment